Skip to content

fetch.py

key

object that allows requesting the primary key as an argument in expression.fetch() The string "KEY" can be used instead of the class key

Source code in datajoint/fetch.py
17
18
19
20
21
22
23
class key:
    """
    object that allows requesting the primary key as an argument in expression.fetch()
    The string "KEY" can be used instead of the class key
    """

    pass

to_dicts(recarray)

convert record array to a dictionaries

Source code in datajoint/fetch.py
30
31
32
33
def to_dicts(recarray):
    """convert record array to a dictionaries"""
    for rec in recarray:
        yield dict(zip(recarray.dtype.names, rec.tolist()))

Fetch

A fetch object that handles retrieving elements from the table expression.

Parameters:

Name Type Description Default
expression

the QueryExpression object to fetch from.

required
Source code in datajoint/fetch.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
class Fetch:
    """
    A fetch object that handles retrieving elements from the table expression.

    :param expression: the QueryExpression object to fetch from.
    """

    def __init__(self, expression):
        self._expression = expression

    def __call__(
        self,
        *attrs,
        offset=None,
        limit=None,
        order_by=None,
        format=None,
        as_dict=None,
        squeeze=False,
        download_path=".",
    ):
        """
        Fetches the expression results from the database into an np.array or list of dictionaries and
        unpacks blob attributes.

        :param attrs: zero or more attributes to fetch. If not provided, the call will return all attributes of this
                        table. If provided, returns tuples with an entry for each attribute.
        :param offset: the number of tuples to skip in the returned result
        :param limit: the maximum number of tuples to return
        :param order_by: a single attribute or the list of attributes to order the results. No ordering should be assumed
                        if order_by=None. To reverse the order, add DESC to the attribute name or names: e.g. ("age DESC",
                        "frequency") To order by primary key, use "KEY" or "KEY DESC"
        :param format: Effective when as_dict=None and when attrs is empty None: default from config['fetch_format'] or
                        'array' if not configured "array": use numpy.key_array "frame": output pandas.DataFrame. .
        :param as_dict: returns a list of dictionaries instead of a record array. Defaults to False for .fetch() and to
                        True for .fetch('KEY')
        :param squeeze:  if True, remove extra dimensions from arrays
        :param download_path: for fetches that download data, e.g. attachments
        :return: the contents of the table in the form of a structured numpy.array or a dict list
        """
        if offset or order_by or limit:
            self._expression = self._expression.restrict(
                Top(
                    limit,
                    order_by,
                    offset,
                )
            )

        attrs_as_dict = as_dict and attrs
        if attrs_as_dict:
            # absorb KEY into attrs and prepare to return attributes as dict (issue #595)
            if any(is_key(k) for k in attrs):
                attrs = list(self._expression.primary_key) + [
                    a for a in attrs if a not in self._expression.primary_key
                ]
        if as_dict is None:
            as_dict = bool(attrs)  # default to True for "KEY" and False otherwise
        # format should not be specified with attrs or is_dict=True
        if format is not None and (as_dict or attrs):
            raise DataJointError(
                "Cannot specify output format when as_dict=True or "
                "when attributes are selected to be fetched separately."
            )
        if format not in {None, "array", "frame"}:
            raise DataJointError(
                "Fetch output format must be in "
                '{{"array", "frame"}} but "{}" was given'.format(format)
            )

        if not (attrs or as_dict) and format is None:
            format = config["fetch_format"]  # default to array
            if format not in {"array", "frame"}:
                raise DataJointError(
                    'Invalid entry "{}" in datajoint.config["fetch_format"]: '
                    'use "array" or "frame"'.format(format)
                )

        get = partial(
            _get,
            self._expression.connection,
            squeeze=squeeze,
            download_path=download_path,
        )
        if attrs:  # a list of attributes provided
            attributes = [a for a in attrs if not is_key(a)]
            ret = self._expression.proj(*attributes)
            ret = ret.fetch(
                offset=offset,
                limit=limit,
                order_by=order_by,
                as_dict=False,
                squeeze=squeeze,
                download_path=download_path,
                format="array",
            )
            if attrs_as_dict:
                ret = [
                    {k: v for k, v in zip(ret.dtype.names, x) if k in attrs}
                    for x in ret
                ]
            else:
                return_values = [
                    (
                        list(
                            (to_dicts if as_dict else lambda x: x)(
                                ret[self._expression.primary_key]
                            )
                        )
                        if is_key(attribute)
                        else ret[attribute]
                    )
                    for attribute in attrs
                ]
                ret = return_values[0] if len(attrs) == 1 else return_values
        else:  # fetch all attributes as a numpy.record_array or pandas.DataFrame
            cur = self._expression.cursor(as_dict=as_dict)
            heading = self._expression.heading
            if as_dict:
                ret = [
                    dict((name, get(heading[name], d[name])) for name in heading.names)
                    for d in cur
                ]
            else:
                ret = list(cur.fetchall())
                record_type = (
                    heading.as_dtype
                    if not ret
                    else np.dtype(
                        [
                            (
                                (
                                    name,
                                    type(value),
                                )  # use the first element to determine blob type
                                if heading[name].is_blob
                                and isinstance(value, numbers.Number)
                                else (name, heading.as_dtype[name])
                            )
                            for value, name in zip(ret[0], heading.as_dtype.names)
                        ]
                    )
                )
                try:
                    ret = np.array(ret, dtype=record_type)
                except Exception as e:
                    raise e
                for name in heading:
                    # unpack blobs and externals
                    ret[name] = list(map(partial(get, heading[name]), ret[name]))
                if format == "frame":
                    ret = pandas.DataFrame(ret).set_index(heading.primary_key)
        return ret

Fetch1

Fetch object for fetching the result of a query yielding one row.

Parameters:

Name Type Description Default
expression

a query expression to fetch from.

required
Source code in datajoint/fetch.py
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
class Fetch1:
    """
    Fetch object for fetching the result of a query yielding one row.

    :param expression: a query expression to fetch from.
    """

    def __init__(self, expression):
        self._expression = expression

    def __call__(self, *attrs, squeeze=False, download_path="."):
        """
        Fetches the result of a query expression that yields one entry.

        If no attributes are specified, returns the result as a dict.
        If attributes are specified returns the corresponding results as a tuple.

        Examples:
        d = rel.fetch1()   # as a dictionary
        a, b = rel.fetch1('a', 'b')   # as a tuple

        :params *attrs: attributes to return when expanding into a tuple.
                 If attrs is empty, the return result is a dict
        :param squeeze:  When true, remove extra dimensions from arrays in attributes
        :param download_path: for fetches that download data, e.g. attachments
        :return: the one tuple in the table in the form of a dict
        """
        heading = self._expression.heading

        if not attrs:  # fetch all attributes, return as ordered dict
            cur = self._expression.cursor(as_dict=True)
            ret = cur.fetchone()
            if not ret or cur.fetchone():
                raise DataJointError(
                    "fetch1 requires exactly one tuple in the input set."
                )
            ret = dict(
                (
                    name,
                    _get(
                        self._expression.connection,
                        heading[name],
                        ret[name],
                        squeeze=squeeze,
                        download_path=download_path,
                    ),
                )
                for name in heading.names
            )
        else:  # fetch some attributes, return as tuple
            attributes = [a for a in attrs if not is_key(a)]
            result = self._expression.proj(*attributes).fetch(
                squeeze=squeeze, download_path=download_path, format="array"
            )
            if len(result) != 1:
                raise DataJointError(
                    "fetch1 should only return one tuple. %d tuples found" % len(result)
                )
            return_values = tuple(
                (
                    next(to_dicts(result[self._expression.primary_key]))
                    if is_key(attribute)
                    else result[attribute][0]
                )
                for attribute in attrs
            )
            ret = return_values[0] if len(attrs) == 1 else return_values
        return ret