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This is a detailed manual for active users of DataJoint in MATLAB.

This documentation can be read sequentially from start to end or used as reference for specific topics.

For a guided introduction to DataJoint, please explore our tutorials at http://tutorials.datajoint.io

TABLE OF CONTENTS 1
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CHAPTER

ONE

INTRODUCTION

1.1 Data Pipelines

1.1.1 What is a data pipeline?

A scientific data pipeline is a collection of processes and systems for organizing the data, computations, and work-
flows used by a research group as they jointly perform complex sequences of data acquisition, processing, and analysis.

A variety of tools can be used for supporting shared data pipelines:

Data repositories Research teams set up a shared data repository. This minimal data management tool allows
depositing and retrieving data and managing user access. For example, this may include a collection of files with
standard naming conventions organized into folders and sub-folders. Or a data repository might reside on the
cloud, for example in a collection of S3 buckets. This image of data management – where files are warehoused
and retrieved from a hierarchically-organized system of folders – is an approach that is likely familiar to most
scientists.

Database systems Databases are a form of data repository providing additional capabilities:

1) Defining, communicating, and enforcing structure in the stored data.

2) Maintaining data integrity: correct identification of data and consistent cross-references, depen-
dencies, and groupings among the data.

3) Supporting queries that retrieve various cross-sections and transformation of the deposited data.

Most scientists have some familiarity with these concepts, for example the notion of maintaining con-
sistency between data and the metadata that describes it, or applying a filter to an Excel spreadsheet
to retrieve specific subsets of information. However, usually the more advanced concepts involved in
building and using relational databases fall under the specific expertise of data scientists.

Data pipelines Data pipeline frameworks may include all the features of a database system along with additional
functionality:

1) Integrating computations to perform analyses and manage intermediate results in a principled
way.

2) Supporting distributed computations without conflict.

3) Defining, communicating, and enforcing workflow, making clear the sequence of steps that
must be performed for data entry, acquisition, and processing.

Again, the informal notion of an analysis “workflow” will be familiar to most scientists, along with
the logistical difficulties associated with managing a workflow that is shared by multiple scientists
within or across labs.

Therefore, a full-featured data pipeline framework may also be described as a scientific workflow system.

3
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Fig. 1: Major features of data management frameworks: data repositories, databases, and data pipelines.

1.1.2 What is DataJoint?

DataJoint is a free open-source framework for creating scientific data pipelines directly from MATLAB or Python
(or any mixture of the two). The data are stored in a language-independent way that allows interoperability between
MATLAB and Python, with additional languages in the works. DataJoint pipelines become the central tool in the
operations of data-intensive labs or consortia as they organize participants with different roles and skills around a
common framework.

In DataJoint, a data pipeline is a sequence of steps (more generally, a directed acyclic graph) with integrated data
storage at each step. The pipeline may have some nodes requiring manual data entry or import from external sources,
some that read from raw data files, and some that perform computations on data stored in other database nodes. In
a typical scenario, experimenters and acquisition instruments feed data into nodes at the head of the pipeline, while
downstream nodes perform automated computations for data processing and analysis.

4 Chapter 1. Introduction
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Fig. 2: For example, this is the pipeline for a simple mouse experiment involving calcium imaging in mice.

In this example, the experimenter first enters information about a mouse, then enters information about each imaging
session in that mouse, and then each scan performed in each imaging session. Next the automated portion of the
pipeline takes over to import the raw imaging data, perform image alignment to compensate for motion, image seg-
mentation to identify cells in the images, and extraction of calcium traces. Finally, the receptive field (RF) computation
is performed by relating the calcium signals to the visual stimulus information.

1.1.3 How DataJoint works

DataJoint enables data scientists to build and operate scientific data pipelines.

Fig. 3: Conceptual overview of DataJoint operation.

DataJoint provides a simple and powerful data model, which is detailed more formally in Yatsenko D, Walker EY,
Tolias AS (2018). DataJoint: A Simpler Relational Data Model.. Put most generally, a “data model” defines how to

1.1. Data Pipelines 5
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think about data and the operations that can be performed on them. DataJoint’s model is a refinement of the relational
data model: all nodes in the pipeline are simple tables storing data, tables are related by their shared attributes,
and query operations can combine the contents of multiple tables. DataJoint enforces specific constraints on the
relationships between tables that help maintain data integrity and enable flexible access. DataJoint uses a succinct data
definition language, a powerful data query language, and expressive visualizations of the pipeline. A well-defined and
principled approach to data organization and computation enables teams of scientists to work together efficiently. The
data become immediately available to all participants with appropriate access privileges. Some of the “participants”
may be computational agents that perform processing and analysis, and so DataJoint features a built-in distributed job
management process to allow distributing analysis between any number of computers.

From a practical point of view, the back-end data architecture may vary depending on project requirements. Typically,
the data architecture includes a relational database server (e.g. MySQL) and a bulk data storage system (e.g. AWS
S3 or a filesystem). However, users need not interact with the database directly, but via MATLAB or Python objects
that are each associated with an individual table in the database. One of the main advantages of this approach is that
DataJoint clearly separates the data model facing the user from the data architecture implementing data management
and computing. DataJoint works well in combination with good code sharing (e.g. with git) and environment sharing
(e.g. with Docker)

DataJoint is designed for quick prototyping and continuous exploration as experimental designs change or evolve.
New analysis methods can be added or removed at any time, and the structure of the workflow itself can change over
time, for example as new data acquisition methods are developed.

With DataJoint, data sharing and publishing is no longer a separate step at the end of the project. Instead data sharing
is an inherent feature of the process: to share data with other collaborators or to publish the data to the world, one only
needs to set the access privileges.

1.1.4 Real-life example

The Mesoscale Activity Project (MAP) is a collaborative project between four neuroscience labs. MAP uses DataJoint
for data acquisition, processing, analysis, interfaces, and external sharing.

Fig. 4: The DataJoint pipeline for the MAP project.

The pipeline is hosted in the cloud through Amazon Web Services (AWS). MAP data scientists at the Janelia Research
Campus and Baylor College of Medicine defined the data pipeline. Experimental scientists enter manual data directly

6 Chapter 1. Introduction
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into the pipeline using the Helium web interface. The raw data are preprocessed using the DataJoint client libraries
in MATLAB and Python; the preprocessed data are ingested into the pipeline while the bulky and raw data are shared
using Globus transfer through the PETREL storage servers provided by the Argonne National Lab. Data are made
immediately available for exploration and analysis to collaborating labs, and the analysis results are also immediately
shared. Analysis data may be visualized through web interfaces. Intermediate results may be exported into the NWB
format for sharing with external groups.

1.1.5 Summary of DataJoint features

1. A free, open-source framework for scientific data pipelines and workflow management

2. Data hosting in cloud or in-house

3. MySQL, filesystems, S3, and Globus for data management

4. Define, visualize, and query data pipelines from MATLAB or Python

5. Enter and view data through GUIs

6. Concurrent access by multiple users and computational agents

7. Data integrity: identification, dependencies, groupings

8. Automated distributed computation

1.2 Teamwork

1.2.1 Data management in a science project

Science labs organize their projects as a sequence of activities of experiment design, data acquisition, and processing
and analysis.

Fig. 5: Workflow and dataflow in a common findings-centered approach to data science in a science lab.

Many labs lack a uniform data management strategy that would span longitudinally across the entire project lifecycle
as well as laterally across different projects.

Prior to publishing their findings, the research team may need to publish the data to support their findings. Without a
data management system, this requires custom repackaging of the data to conform to the FAIR principles for scientific
data management.

1.2. Teamwork 7
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1.2.2 Data-centric project organization

DataJoint is designed to support a data-centric approach to large science projects in which data are viewed as a
principal output of the research project and are managed systematically throughout in a single framework through the
entire process.

This approach requires formulating a general data science plan and upfront investment for setting up resources and
processes and training the teams. The team uses DataJoint to build data pipelines to support multiple projects.

Fig. 6: Workflow and dataflow in a data pipeline-centered approach.

Data pipelines support project data across their entire lifecycle, including the following functions

• experiment design

• animal colony management

• electronic lab book: manual data entry during experiments through graphical user interfaces.

• acquisition from instrumentation in the course of experiments

• ingest from raw acquired data

• computations for data analysis

• visualization of analysis results

• export for sharing and publishing

Through all these activities, all these data are made accessible to all authorized participants and distributed computa-
tions can be done in parallel without compromising data integrity.

1.2.3 Team roles

The adoption of a uniform data management framework allows separation of roles and division of labor among team
members, leading to greater efficiency and better scaling.

8 Chapter 1. Introduction
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Fig. 7: Distinct responsibilities of data science and data engineering.

Scientists

design and conduct experiments, collecting data. They interact with the data pipeline through graphical
user interfaces designed by others. They understand what analysis is used to test their hypotheses.

Data scientists

have the domain expertise and select and implement the processing and analysis methods for experimental
data. Data scientists are in charge of defining and managing the data pipeline using DataJoint’s data model,
but they may not know the details of the underlying architecture. They interact with the pipeline using
client programming interfaces directly from languages such as MATLAB and Python.

The bulk of this manual is written for working data scientists, except for System Administration.

Data engineers

work with the data scientists to support the data pipeline. They rely on their understanding of the DataJoint
data model to configure and administer the required IT resources such as database servers, data storage
servers, networks, cloud instances, Globus endpoints, etc. Data engineers can provide general solutions
such as web hosting, data publishing, interfaces, exports and imports.

The System Administration section of this tutorial contains materials helpful in accomplishing these tasks.

DataJoint is designed to delineate a clean boundary between data science and data engineering. This allows data
scientists to use the same uniform data model for data pipelines backed by a variety of information technologies. This
delineation also enables economies of scale as a single data engineering team can support a wide spectrum of science
projects.

1.3 Input and Output

1.3.1 Where is my data?

New users often ask this question thinking of passive data repositories – collections of files and folders and a separate
collection of metadata – information about how the files were collected and what they contain. Let’s address metadata
first, since the answer there is easy: Everything goes in the database! Any information about the experiment that
would normally be stored in a lab notebook, in an Excel spreadsheet, or in a Word document is entered into tables in
the database. These tables can accommodate numbers, strings, dates, or numerical arrays. The entry of metadata can
be manual, or it can be an automated part of data acquisition (in this case the acquisition software itself is modified to
enter information directly into the database).

1.3. Input and Output 9
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Depending on their size and contents, raw data files can be stored in a number of ways. In the simplest and most
common scenario, raw data continue to be stored in either a local filesystem or in the cloud as collections of files
and folders. The paths to these files are entered in the database (again, either manually or by automated processes).
This is the point at which the notion of a data pipeline begins. Below these “manual tables” that contain metadata
and file paths are a series of tables that load raw data from these files, process it in some way, and insert derived or
summarized data directly into the database. For example, in an imaging application, the very large raw .TIFF stacks
would reside on the filesystem, but the extracted fluorescent trace timeseries for each cell in the image would be stored
as a numerical array directly in the database. Or the raw video used for animal tracking might be stored in a standard
video format on the filesystem, but the computed X/Y positions of the animal would be stored in the database. Storing
these intermediate computations in the database makes them easily available for downstream analyses and queries.

1.3.2 Do I have to manually enter all my data into the database?

No! While some of the data will be manually entered (the same way that it would be manually recorded in a lab
notebook), the advantage of DataJoint is that standard downstream processing steps can be run automatically on all
new data with a single command. This is where the notion of a data pipeline comes into play. When the workflow
of cleaning and processing the data, extracting important features, and performing basic analyses is all implemented
in a DataJoint pipeline, minimal effort is required to analyze newly-collected data. Depending on the size of the raw
files and the complexity of analysis, useful results may be available in a matter of minutes or hours. Because these
results are stored in the database, they can be made available to anyone who is given access credentials for additional
downstream analyses.

1.3.3 Won’t the database get too big if all my data are there?

Typically, this is not a problem. If you find that your database is getting larger than a few dozen TB, DataJoint
provides transparent solutions for storing very large chunks of data (larger than the 4 GB that can be natively stored as
a LONGBLOB in MySQL). However, in many scenarios even long time series or images can be stored directly in the
database with little effect on performance.

1.3.4 Why not just process the data and save them back to a file?

There are two main advantages to storing results in the database. The first is data integrity. Because the relationships
between data are enforced by the structure of the database, DataJoint ensures that the metadata in the upstream nodes
always correctly describes the computed results downstream in the pipeline. If a specific experimental session is
deleted, for example, all the data extracted from that session are automatically removed as well, so there is no chance
of “orphaned” data. Likewise, the database ensures that computations are atomic. This means that any computation
performed on a dataset is performed in an all-or-none fashion. Either all of the data are processed and inserted, or
none at all. This ensures that there are no incomplete data. Neither of these important features of data integrity can be
guaranteed by a file system.

The second advantage of storing intermediate results in a data pipeline is flexible access. Accessing arbitrarily complex
subsets of the data can be achieved with DataJoint’s flexible query language. When data are stored in files, collecting
the desired data requires trawling through the file hierarchy, finding and loading the files of interest, and selecting the
interesting parts of the data.

This brings us to the final important question:

10 Chapter 1. Introduction
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1.3.5 How do I get my data out?

This is the fun part. See Queries for details of the DataJoint query language directly from MATLAB and Python.

1.3.6 Interfaces

Multiple interfaces may be used to get the data into and out of the pipeline.

Some labs use third-party GUI applications such as HeidiSQL and Navicat, for example. These applications allow
entering and editing data in tables similarly to spreadsheets.

The Helium Application (https://mattbdean.github.io/Helium/ and https://github.com/mattbdean/Helium) is web ap-
plication for browsing DataJoint pipelines and entering new data. Matt Dean develops and maintains Helium under
the direction of members of Karel Svoboda’s lab at Janelia Research Campus and Vathes LLC.

Data may also be imported or synchronized into a DataJoint pipeline from exising LIMS (laboratory information
management systems). For example, the International Brain Lab synchronizes data from an Alyx database. For
implementation details, see https://github.com/int-brain-lab/IBL-pipeline.

Other labs (e.g. Sinz Lab) have developed GUI interfaces using the Flask web framework in Python.

GUIs, Google Docs integration, LIMS integration, Slack integration, etc.

. progress: 2.0 100% Dimitri

1.4 Publishing Data

DataJoint is a framework for building data pipelines that support rigorous flow of structured data between experi-
menters, data scientists, and computing agents during data acquisition and processing within a centralized project.
Publishing final datasets for the outside world may require additional steps and conversion.

1.4.1 Provide access to a DataJoint server

One approach for publishing data is to grant public access to an existing pipeline. Then public users will be able to
query the data pipelines using DataJoint’s query language and output interfaces just like any other users of the pipeline.
For security, this may require synchronizing the data onto a separate read-only public server.

1.4.2 Containerizing as a DataJoint pipeline

Containerization platforms such as docker allow convenient distribution of environments including database services
and data. It is convenient to publish DataJoint pipelines as a docker container that deploys the populated DataJoint
pipeline. One example of publishing a DataJoint pipeline as a docker container is > Sinz, F., Ecker, A.S., Fahey, P.,
Walker, E., Cobos, E., Froudarakis, E., Yatsenko, D., Pitkow, Z., Reimer, J. and Tolias, A., 2018. Stimulus domain
transfer in recurrent models for large scale cortical population prediction on video. In Advances in Neural Information
Processing Systems (pp. 7198-7209). https://www.biorxiv.org/content/early/2018/10/25/452672

The code and the data can be found at https://github.com/sinzlab/Sinz2018_NIPS

1.4. Publishing Data 11
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1.4.3 Exporting into a collection of files

Another option for publishing and archiving data is to export the data from the DataJoint pipeline into a collection of
files. DataJoint provides features for exporting and importing sections of the pipeline. Several ongoing projects are
implementing the capability to export from DataJoint pipelines into Neurodata Without Borders files.

1.5 Progress

Dimitri Yatsenko began development of DataJoint in Andreas S.Tolias’ lab in the Neuroscience Department at Baylor
College of Medicine in the fall of 2009. Initially implemented as a thin MySQL API in MATLAB, it defined the major
principles of the DataJoint model.

Many students and postdocs in the lab as well as collaborators and early adopters have contributed to the project.
Jacob Reimer and Emmanouil Froudarakis became early adopters in Andreas Tolias’ Lab and propelled development.
Alexander S. Ecker, Philipp Berens, Andreas Hoenselaar, and R. James Cotton contributed to the formulation of the
overall requirements for the data model and critical reviews of DataJoint development.

Outside the Tolias lab, the first labs to adopt DataJoint (approx. 2010) were the labs of Athanassios G. Siapas at
CalTech, Laura Busse and Steffen Katzner at the University of Tübingen.

In 2015, the Python implementation gained momentum with Edgar Y. Walker and Fabian Sinz joining as principal
contributors.

In 2016, Andreas Tolias Lab joined the MICrONS project, using DataJoint to process volumes of neurophysiology
and neuroanatomical data shared across large teams.

In 2016, Vathes LLC was founded to provide support to groups using DataJoint.

In 2017, DARPA awarded a small-business innovation research grant to Vathes LLC (Contract D17PC00162) to further
develop and publicize the DataJoint framework.

In June 2018, the Princeton Neuroscience Institute, under the leadership of Prof. Carlos Brody, began funding a project
to generate a detailed DataJoint user manual.

1.6 License

This documentation is distributed under the Creative Commons Attribution-ShareAlike 4.0 International Public Li-
cense. CC BY-SA 4.0 with copyright to “DataJoint Contributors” and required URL reference to https://docs.datajoint.
io.

1.7 FAQs

1.7.1 How do I use GUIs with DataJoint?

It is common to enter data during experiments using a graphical user interface.
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1.7.2 Does DataJoint support other programming languages?

DataJoint was originally developed to support MATLAB, followed by Python. DataJoint’s data model and data rep-
resentation are largely language independent, which means that any language with a DataJoint client can work with a
data pipeline defined in any other language. DataJoint clients for other programming languages will be implemented
based on demand. All languages must comply to the same data model and computation approach as defined in Data-
Joint: a simpler relational data model.

1.7.3 Is DataJoint another ORM?

Programmers are familiar with object-relational mappings (ORM) in various programming languages. Python in
particular has several popular ORMs such as SQLAlchemy and Django ORM. The purpose of ORMs is to allow
representations and manipulations of objects from the host programming language as data in a relational database.
ORMs allow making objects persistent between program executions. ORMs create a bridge or a mapping between
the object model used by the host language and the relational model allowed by the database. The result is always
a compromise, usually toward the object model. ORMs usually forgo key concepts, features, and capabilities of the
relational model for the sake of convenient programming constructs in the language.

In contrast, DataJoint implements a data model that is a refinement of the relational data model and that adheres to it
faithfully without compromising its principles. DataJoint supports data integrity (entity integrity, referential integrity,
and group integrity) and provides a fully capable relational query language. DataJoint remains absolutely data-centric,
with the primary focus on the structure and integrity of the data pipeline. Other ORMs are more application-centric,
primarily focusing on the application design while the database plays a secondary role supporting the application with
object persistence and sharing.

1.7.4 How can I use DataJoint with a LIMS?

Lab Information Management Systems (LIMS)

1.7.5 What is the difference between DataJoint and Alyx?

Alyx is an experiment management database application developed in Kenneth Harris’ lab at UCL.

Alyx is an application with a fixed pipeline design with a nice graphical user interface. In contrast, DataJoint is a
general-purpose library for designing and building data processing pipelines.

Alyx is geared towards ease of data entry and tracking for a specific workflow (e.g. mouse colony information and
some pre-specified experiments) and data types. DataJoint could be used as a more general purposes tool to design,
implement, and execute processing on such workflows/pipelines from scratch, and DataJoint focuses on flexibility,
data integrity, and ease of data analysis. The purposes are partly overlapping and complementary. The International
Brain Lab project is developing a bridge from Alyx to DataJoint, hosted as an open-source project. It implements
a DataJoint schema that replicates the major features of the Alyx application and a synchronization script from an
existing Alyx database to its DataJoint counterpart.
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1.8 Release Notes

1.8.1 3.4.3 – May 28, 2021

• Bugfix: dj.config omits default values when loading new config immediately after MATLAB boot (#359) PR
#369

• Bugfix: Regression error when using fetchn with a join (#361) PR #369

• Bugfix: Cascading delete not functioning properly when using renamed foreign keys (#362) PR #369

• Update NGINX reverse-proxy image use PR #369

• Bugfix: Add support to curly brackets in comments (#365) PR #373

1.8.2 3.4.2 – March 16, 2021

• Bugfix: Fetchn with zero results throws an error (#353) PR #355

• Bugfix: Syntax error in documentation for next auto_increment value (#352) PR #355

1.8.3 3.4.1 – December 18, 2020

• Bugfix: Error on accessing unmanaged Imported/Computed tables (#336) PR #338

• Bugfix: Certain characters in attribute comment not escaped properly (#210, #335) PR #338

• Bugfix: dj.config.load(. . . ) after initial MATLAB boot throws invalid input error. PR #338

1.8.4 3.4.0 – December 11, 2020

• Minor: Add dj.config to be compatible with dj-python and removed dj.set (#186) #188

• Minor: Add UUID DataJoint datatype (#180) PR #194

• Minor: Add file external storage (#143) PR #197

• Minor: Add S3 external storage (#88) PR #207

• Minor: Improve dependency version compatibility handling (#228) PR #285

• Minor: Add unique and nullable options for foreign keys (#110) PR #303

• Minor: Add non-interactive option for dj.new (#69) #317

• Minor: Add dj.kill_quick (#251) PR #314

• Minor: Log connection ID, user in jobs table (#87, #275) PR #314

• Bugfix: Handle empty password (#250) PR #279, #292

• Bugfix: Disable GUI password if running headless (#278) PR #280, #292

• Bugfix: Add order_by option to dj.kill output (#229) PR #248, #292

• Bugfix: erd function missing from package (#307) PR #310

• Bugfix: Error on extremely short table names (#311) PR #317

• Bugfix: Incorrect return when fetchn of an external field (#269) PR #274
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• Bugfix: MATLAB crashes randomly on insert 8-byte string (#255) PR #257

• Bugfix: Errors thrown when seeing unsupported DataJoint types (#254) PR #265

• Bugfix: Fix SQL argument growth condition on blobs (#217) PR #220

• Tests: Add R2016b tests (#233) PR #235

• Tests: Convert testing framework from TravisCI to GitHub Actions (#320) PR #317

• Tests: Increase test coverage

1.8.5 3.3.2 – October 15, 2020

• Bugfix: Add blob validation for insert/update regarding sparse matrices which are not yet supported (#238) PR
#241

• Bugfix: Modify update to allow nullable updates for strings/date (#211) PR #213

• Bugfix: createSchema had some issues with MySQL8 PR #213

• Update tests

• Docs: Update example related to virtual class (#199) PR #261

• Docs: Fix typos (#150, #151) PR #263, PR #262

• Upgrade packaging and installation to utilize MATLAB Toolbox i.e. DataJoint.mltbx PR #285

1.8.6 3.3.1 – October 31, 2019

• Ability to create schema without GUI PR #155

• Support secure connections with TLS (aka SSL) (#103) PR #157, mym-PR #11, #12, #13

• Allow GUI-based password entry to avoid cleartext password from being captured in MATLAB log PR #159

• Add detailed error message if DJ012 Python-native blobs detected (#170) mYm-PR #16

• Add support for PAM connections via MariaDB’s Dialog plugin (#168, #169) mYm-PR #14, #15

• Minor improvements to reuse of connection if applicable PR #166, #167

• Bugfixes (#152)

1.8.7 3.2.2 – February 5, 2019

Previous release notes TBD
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DataJoint User Manual, Release matlab-v3.4

16 Chapter 1. Introduction



CHAPTER

TWO

SERVER ADMINISTRATION

2.1 Database Server Hosting

Let’s say a person, a lab, or a multi-lab consortium decide to use DataJoint as their data pipeline platform. What IT
resources and support will be required?

DataJoint uses a MySQL-compatible database server such as MySQL, MariaDB, Percona Server, or Amazon Aurora
to store the structured data used for all relational operations. Large blocks of data associated with these records such
as multidimensional numeric arrays (signals, images, scans, movies, etc) can be stored within the database or stored
in additionally configured bulk storage.

The first decisions you need to make are where this server will be hosted and how it will be administered. The server
may be hosted on your personal computer, on a dedicated machine in your lab, or in a cloud-based database service.

2.1.1 Cloud hosting

Increasingly, many teams make use of cloud-hosted database services, which allow great flexibility and easy admin-
istration of the database server. A cloud hosting option will be provided through https://hub.datajoint.io. The hub
simplifies the setup for labs that wish to host their data pipelines in the cloud and allows sharing pipelines between
multiple groups and locations. Being an open-source solution, other cloud services such as Amazon RDS can also be
used in this role, albeit with less DataJoint-centric customization.

2.1.2 Self hosting

In the most basic configuration, the relational database software and DataJoint are installed onto a single computer
which is used by an individual user. To support a small group of users, a larger computer can be used instead and con-
figured for remote access. As the number of users grows, individual workstations can be installed with the DataJoint
software and used to connect to a larger and more specialized centrally located database server machine.

For even larger groups or multi-site collaborations, multiple database servers may be configured in a replicated fashion
to support larger workloads and simultaneous multi-site access. The following section provides some basic guidelines
for these configurations here and in the subsequent sections of the documentation.

17
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2.1.3 General server / hardware support requirements

The following table lists some likely scenarios for DataJoint database server deployments and some reasonable esti-
mates of the required computer hardware. The required IT/systems support needed to ensure smooth operations in the
absence of local database expertise is also listed.

Table 1: IT infrastructures
Usage Scenario DataJoint Database Com-

puter
Required IT Support

Single User Personal Laptop or Worksta-
tion

Self-Supported or Ad-Hoc General
IT Support

Small Group (e.g. 2-10 Users) Workstation or Small Server Ad-Hoc General or Experienced IT
Support

Medium Group (e.g. 10-30 Users) Small to Medium Server Ad-Hoc/Part Time Experienced or
Specialized IT Support

Large Group/Department (e.g. 30-50+

Users)
Medium/Large Server or
Multi-Server Replication

Part Time/Dedicated Experienced
or Specialized IT Support

Multi-Location Collaboration (30+ users,
Geographically Distributed)

Large Server, Advanced
Replication

Dedicated Specialized IT Support

2.2 Relational Database Server

2.2.1 Hardware considerations

As in any computer system, CPU, RAM memory, disk storage, and network speed are important components of
performance. The relational database component of DataJoint is no exception to this rule. This section discusses the
various factors relating to selecting a server for your DataJoint pipelines.

CPU

CPU speed and parallelism (number of cores/threads) will impact the speed of queries and the number of simultaneous
queries which can be efficiently supported by the system. It is a good rule of thumb to have enough cores to support
the number of active users and background tasks you expect to have running during a typical ‘busy’ day of usage. For
example, a team of 10 people might want to have 8 cores to support a few active queries and background tasks.

RAM

The amount of RAM will impact the amount of DataJoint data kept in memory, allowing for faster querying of data
since the data can be searched and returned to the user without needing to access the slower disk drives. It is a good
idea to get enough memory to fully store the more important and frequently accessed portions of your dataset with
room to spare, especially if in-database blob storage is used instead of external bulk storage.
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Disk

The disk storage for a DataJoint database server should have fast random access, ideally with flash-based storage to
eliminate the rotational delay of mechanical hard drives.

Networking

When network connections are used, network speed and latency are important to ensure that large query results can be
quickly transferred across the network and that delays due to data entry/query round-trip have minimal impact on the
runtime of the program.

General recommendations

DataJoint datasets can consist of many thousands or even millions of records. Generally speaking one would want to
make sure that the relational database system has sufficient CPU speed and parallelism to support a typical number
of concurrent users and to execute searches quickly. The system should have enough RAM to store the primary key
values of commonly used tables and operating system caches. Disk storage should be fast enough to support quick
loading of and searching through the data. Lastly, network bandwidth must be sufficient to support transferring user
records quickly.

2.2.2 Large-scale installations

Database replication may be beneficial if system downtime or precise database responsiveness is a concern Replication
can allow for easier coordination of maintenance activities, faster recovery in the event of system problems, and
distribution of the database workload across server machines to increase throughput and responsiveness.

Master-slave replication

Master/slave replication allows for creation of a read-only database copy which is updated in real time. This copy can
be used for backup or queries which are not time sensitive. It can also be upgraded with read-write usage in the event
that the main database fails.

Multi-master replication

Multi-master replication configurations allow for all replicas to be used in a read/write fashion, with the workload
being distributed among all machines. However, multi-master replication is also more complicated, requiring front-
end machines to distribute the workload, similar performance characteristics on all replicas to prevent bottlenecks, and
redundant network connections to ensure the replicated machines are always in sync.

2.2.3 Recommendations

It is usually best to go with the simplest solution which can suit the requirements of the installation, adjusting work-
loads where possible and adding complexity only as needs dictate.

Resource requirements of course depend on the data collection and processing needs of the given pipeline, but there
are general size guidelines that can inform any system configuration decisions. A reasonably powerful workstation
or small server should support the needs of a small group (2-10 users). A medium or large server should support the
needs of a larger user community (10-30 users). A replicated or distributed setup of 2 or more medium or large servers
may be required in larger cases. These requirements can be reduced through the use of external or cloud storage,
which is discussed in the subsequent section.
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Table 2: Recommendations
Usage Scenario DataJoint Database

Computer
Hardware Recommendation

Single User Personal Laptop or
Workstation

4 Cores, 8-16GB or more of RAM, SSD or better storage

Small Group (e.g. 2-10
Users)

Workstation or Small
Server

8 or more Cores, 16GB or more of RAM, SSD or better
storage

Medium Group (e.g. 10-30
Users)

Small to Medium
Server

8-16 or more Cores, 32GB or more of RAM, SSD/RAID
or better storage

Large Group/Department
(e.g. 30-50+ Users)

Medium/Large
Server or Multi-
Server Replication

16-32 or more Cores, 64GB or more of RAM, SSD Raid
storage, multiple machines

Multi-Location Collaboration
(30+ users, Geographically
Distributed)

Large Server, Ad-
vanced Replication

16-32 or more Cores, 64GB or more of RAM, SSD Raid
storage, multiple machines; potentially multiple machines
in multiple locations

2.2.4 Docker

A Docker image is available for a MySQL server configured to work with DataJoint: https://github.com/datajoint/
mysql-docker.

2.3 User Management

Create user accounts on the MySQL server. For example, if your username is alice, the SQL code for this step is:

CREATE USER 'alice'@'%' IDENTIFIED BY 'alices-secret-password';

Existing users can be listed using the following SQL:

SELECT user, host from mysql.user;

Teams that use DataJoint typically divide their data into schemas grouped together by common prefixes. For example,
a lab may have a collection of schemas that begin with common_ . Some common processing may be organized into
several schemas that begin with pipeline_ . Typically each user has all privileges to schemas that begin with her
username.

For example, alice may have privileges to select and insert data from the common schemas (but not create new tables),
and have all privileges to the pipeline schemas.

Then the SQL code to grant her privileges might look like:

GRANT SELECT, INSERT ON `common\_%`.* TO 'alice'@'%';
GRANT ALL PRIVILEGES ON `pipeline\_%`.* TO 'alice'@'%';
GRANT ALL PRIVILEGES ON `alice\_%`.* TO 'alice'@'%';

To note, the ALL PRIVILEGES option allows the user to create and remove databases without administrator interven-
tion.

Once created, a user’s privileges can be listed using the SHOW GRANTS statement.

SHOW GRANTS FOR 'alice'@'%';
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2.3.1 Grouping with Wildcards

Depending on the complexity of your installation, using additional wildcards to group access rules together might
make managing user access rules simpler. For example, the following equivalent convention:

GRANT ALL PRIVILEGES ON `user_alice\_%`.* TO 'alice'@'%';

Could then facilitate using a rule like:

GRANT SELECT ON `user\_%\_%`.* TO 'bob'@'%';

to enable bob to query all other users tables using the user_username_database convention without needing to
explicitly give him access to alice\_% , charlie\_% , and so on.

This convention can be further expanded to create notions of groups and protected schemas for background proccesing,
etc. For example:

GRANT ALL PRIVILEGES ON `group\_shared\_%`.* TO 'alice'@'%';
GRANT ALL PRIVILEGES ON `group\_shared\_%`.* TO 'bob'@'%';

GRANT ALL PRIVILEGES ON `group\_wonderland\_%`.* TO 'alice'@'%';
GRANT SELECT ON `group\_wonderland\_%`.* TO 'alice'@'%';

could allow both bob an alice to read/write into the group\_shared databases, but in the case of the

group\_wonderland databases, read write access is restricted to alice.

2.4 Bulk Storage Systems

2.4.1 Why External Bulk Storage?

DataJoint supports the storage of large data objects associated with relational records externally from the MySQL
Database itself. This is significant and useful for a number of reasons.

Cost

One of these is that the high-performance storage commonly used in database systems is more expensive than that used
in more typical commodity storage, and so storing the smaller identifying information typically used in queries on fast,
relational database storage and storing the larger bulk data used for analysis or processing on lower cost commodity
storage can allow for large savings in storage expense.

Flexibility

Storing bulk data separately also facilitates more flexibility in usage, since the bulk data can managed using separate
maintenance processes than that in the relational storage.

For example, larger relational databases may require many hours to be restored in the event of system failures. If
the relational portion of the data is stored separately, with the larger bulk data stored on another storage system, this
downtime can be reduced to a matter of minutes. Similarly, due to the lower cost of bulk commodity storage, more
emphasis can be put into redundancy of this data and backups to help protect the non-relational data.

2.4. Bulk Storage Systems 21



DataJoint User Manual, Release matlab-v3.4

Performance

Storing the non-relational bulk data separately can have system performance impacts by removing data transfer, disk
I/O, and memory load from the database server and shifting these to the bulk storage system. Additionally, datajoint
supports caching of bulk data records which can allow for faster processing of records which already have been
retrieved in previous queries.

Data Sharing

DataJoint provides pluggable support for different external bulk storage backends, which can provide benefits for
data sharing by publishing bulk data to S3-Protocol compatible data shares both in the cloud and on locally managed
systems and other common tools for data sharing, such as Globus, etc.

2.4.2 Bulk Storage Scenarios

Typical bulk storage considerations relate to the cost of the storage backend per unit of storage, the amount of data
which will be stored, the desired focus of the shared data (system performance, data flexibility, data sharing), and data
access. Some common scenarios are given in the following table:

Scenario Storage Solu-
tion

System Requirements Notes

Local Object
Cache

Local External
Storage

Local Hard Drive Used to Speed Access to other Storage

LAN Object
Cache

Network Exter-
nal Storage

Local Network Share Used to Speed Access to other storage, reduce
Cloud/Network Costs/Overhead

Local Object
Store

Local/Network
External Stor-
age

Local/Network Storage Used to store objects externally from the
database

Local S3-
Compatible
Store

Local S3-
Compatible
Server

Network S3-Server Used to host S3-Compatible services locally
(e.g. minio) for internal use or to lower cloud
costs

Cloud S3-
Compatible
Storage

Cloud Provider Internet Connectivity Used to reduce/remove requirement for external
storage management, data sharing

Globus Stor-
age

Globus End-
point

Local/Local Network
Storage, Internet Connec-
tivity

Used for institutional data transfer or publish-
ing.

2.4.3 Bulk Storage Considerations

Although external bulk storage provides a variety of advantages for storage cost and data sharing, it also uses slightly
different data input/retrieval semantics and as such has different performance characteristics.
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Performance Characteristics

In the direct database connection scenario, entire result sets are either added or retrieved from the database in a single
stream action. In the case of external storage, individual record components are retrieved in a set of sequential actions
per record, each one subject to the network round trip to the given storage medium. As such, tables using many small
records may be ill suited to external storage usage in the absence of a caching mechanism. While some of these
impacts may be addressed by code changes in a future release of DataJoint, to some extent, the impact is directly
related from needing to coordinate the activities of the database data stream with the external storage system, and so
cannot be avoided.

Network Traffic

Some of the external storage solutions mentioned above incur cost both at a data volume and transfer bandwidth level.
The number of users querying the database, data access, and use of caches should be considered in these cases to
reduce this cost if applicable.

Data Coherency

When storing all data directly in the relational data store, it is relatively easy to ensure that all data in the database is
consistent in the event of system issues such as crash recoveries, since MySQL’s relational storage engine manages this
for you. When using external storage however, it is important to ensure that any data recoveries of the database system
are paired with a matching point-in-time of the external storage system. While DataJoint does use hashing to help
facilitate a guarantee that external files are uniquely named throughout their lifecycle, the pairing of a given relational
dataset against a given filesystem state is loosely coupled, and so an incorrect pairing could result in processing failures
or other issues.

2.5 External Store

DataJoint organizes most of its data in a relational database. Relational databases excel at representing relationships
between entities and storing structured data. However, relational databases are not particularly well-suited for storing
large continuous chunks of data such as images, signals, and movies. An attribute of type longblob can contain an
object up to 4 GiB in size (after compression) but storing many such large objects may hamper the performance of
queries on the entire table. A good rule of thumb is that objects over 10 MiB in size should not be put in the relational
database. In addition, storing data in cloud-hosted relational databases (e.g. AWS RDS) may be more expensive than
in cloud-hosted simple storage systems (e.g. AWS S3).

DataJoint allows the use of external storage to store large data objects within its relational framework but outside of
the main database.

Defining an externally-stored attribute is used using the notation blob@storename (see also: definition syntax) and
works the same way as a longblob attribute from the users perspective. However, its data are stored in an external
storage system rather than in the relational database.

Various systems can play the role of external storage, including a shared file system accessible to all team members
with access to these objects or a cloud storage solutions such as AWS S3.

For example, the following table stores motion-aligned two-photon movies.

# Motion aligned movies
-> twophoton.Scan
---
aligned_movie : blob@external # motion-aligned movie in 'external' store
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All insert and fetch operations work identically for external attributes as they do for blob attributes, with the same
serialization protocol. Similar to blobs, external attributes cannot be used in restriction conditions.

Multiple external storage configurations may be used simultaneously with the @storename portion of the attribute
definition determining the storage location.

# Motion aligned movies
-> twophoton.Scan
---
aligned_movie : blob@external-raw # motion-aligned movie in 'external-raw' store

2.5.1 Principles of operation

External storage is organized to emulate individual attribute values in the relational database. DataJoint organizes
external storage to preserve the same data integrity principles as in relational storage.

1. The external storage locations are specified in the DataJoint connection configuration with one specification for
each store.

Note: External storage is not yet implemented in MATLAB. The feature will be added in an upcoming release:
https://github.com/datajoint/datajoint-matlab/issues/143

2. Each schema corresponds to a dedicated folder at the storage location with the same name as the database
schema.

3. Stored objects are identified by the SHA-256 hashes (in web-safe base-64 ASCII) of their serialized contents.
This scheme allows for the same object—used multiple times in the same schema—to be stored only once.

4. In the external-raw storage, the objects are saved as files with the hash as the filename.

5. In the external storage, external files are stored in a directory layout corresponding to the hash of the file-
name. By default, this corresponds to the first 2 characters of the hash, followed by the second 2 characters of
the hash, followed by the actual file.

6. Each database schema has an auxiliary table named ~external_<storename> for each configured external
store.

It is automatically created the first time external storage is used. The primary key of
~external_<storename> is the hash of the data (for blobs and attachments) or of the relative paths

to the files for filepath-based storage. Other attributes are the count of references by tables in the schema, the
size of the object in bytes, and the timestamp of the last event (creation, update, or deletion).

Below are sample entries in ~external_<storename> .

Table 3: ~external_raw
HASH size filepath contents_hashtimestamp
1GEqtEU6JYEOLS4sZHeHDxWQ3JJfLlH
VZio1ga25vd2

1039536788 NULL NULL 2017-06-07 23:14:01

The fields filepath and contents_hash relate to the filepath datatype, which will be discussed separately.

7. Attributes of type @<storename> are declared as renamed foreign keys referencing the
~external_<storename> table (but are not shown as such to the user).
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8. The insert operation encodes and hashes the blob data. If an external object is not present in storage for
the same hash, the object is saved and if the save operation is successful, corresponding entities in table
~external_<storename> for that store are created.

9. The delete operation first deletes the foreign key reference in the target table. The external table entry and actual
external object is not actually deleted at this time (soft-delete).

10. The fetch operation uses the hash values to find the data.

In order to prevent excessive network overhead, a special external store named cache can be configured.
If the cache is enabled, the fetch operation need not access ~external_<storename> directly.
Instead fetch will retrieve the cached object without downloading directly from the real external store.

11. Cleanup is performed regularly when the database is in light use or off-line.

12. DataJoint never removes objects from the local cache folder. The cache folder may just be periodically
emptied entirely or based on file access date. If dedicated cache folders are maintained for each schema, then a
special procedure will be provided to remove all objects that are no longer listed in ~external_<storename> .

Data removal from external storage is separated from the delete operations to ensure that data are not lost in race
conditions between inserts and deletes of the same objects, especially in cases of transactional processing or in pro-
cesses that are likely to get terminated. The cleanup steps are performed in a separate process when the risks of race
conditions are minimal. The process performing the cleanups must be isolated to prevent interruptions resulting in
loss of data integrity.

2.5.2 Configuration

The following steps must be performed to enable external storage:

1. Assign external location settings for each storage as shown in the Step 1 example above.

Use dj.config for configuration.

• protocol [s3, file] Specifies whether s3 or file external storage is desired.

• endpoint [s3] Specifies the remote endpoint to the external data for all schemas as well as the
target port.

• bucket [s3] Specifies the appropriate s3 bucket organization.

• location [s3, file] Specifies the subdirectory within the root or bucket of store to pre-
serve data. External objects are thus stored remotely with the following path structure:
<bucket (if applicable)>/<location>/<schema_name>/<subfolding_strategy>/<object> .

• access_key [s3] Specifies the access key credentials for accessing the external location.

• secret_key [s3] Specifies the secret key credentials for accessing the external location.

• secure [s3] Optional specification to establish secure external storage connection with TLS (aka
SSL, HTTPS). Defaults to False .

2. Optionally, for each schema specify the cache folder for local fetch cache.

Note: The cache folder is not yet implemented in MATLAB. The feature will be added in an upcoming release:
https://github.com/datajoint/datajoint-matlab/issues/143
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2.5.3 Cleanup

Deletion of records containing externally stored blobs is a soft-delete which only removes the database-side records
from the database. To cleanup the external tracking table or the actual external files, a separate process is provided as
follows.

Note: External storage is not yet implemented in MATLAB. The feature will be added in an upcoming release:
https://github.com/datajoint/datajoint-matlab/issues/143

2.5.4 Migration between DataJoint v0.11 and v0.12

Note: Please read carefully if you have used external storage in DataJoint v0.11!

The initial implementation of external storage was reworked for DataJoint v0.12. These changes are backward-
incompatible with DataJoint v0.11 so care should be taken when upgrading. This section outlines some details of
the change and a general process for upgrading to a format compatible with DataJoint v0.12 when a schema rebuild is
not desired.

The primary changes to the external data implementation are:

• The external object tracking mechanism was modified. Tracking tables were extended for additional external
datatypes and split into per-store tables to improve database performance in schemas with many external objects.

• The external storage format was modified to use a nested subfolder structure (folding) to improve performance
and interoperability with some filesystems that have limitations or performance problems when storing large
numbers of files in single directories.

Depending on the circumstances, the simplest way to migrate data to v0.12 may be to drop and repopulate the affected
schemas. This will construct the schema and storage structure in the v0.12 format and save the need for database
migration. When recreation is not possible or is not preferred to upgrade to DataJoint v0.12, the following process
should be followed:

1) Stop write activity to all schemas using external storage.

2) Perform a full backup of your database(s).

3) Upgrade your DataJoint installation to v0.12

4) Adjust your external storage configuration (in datajoint.config) to the new v0.12 configuration format (see
above).

5) Migrate external tracking tables for each schema to use the new format. For instance in Python:

>>> import datajoint.migrate as migrate
>>> db_schema_name='schema_1'
>>> external_store='raw'
>>> migrate.migrate_dj011_external_blob_storage_to_dj012(db_schema_name, external_store)

6) Verify pipeline functionality after this process has completed. For instance in Python:

>>> x = myschema.TableWithExternal.fetch('external_field', limit=1)[0]

Note: This migration function is provided on a best-effort basis, and will convert the external tracking tables into
a format which is compatible with DataJoint v0.12. While we have attempted to ensure correctness of the process,
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all use-cases have not been heavily tested. Please be sure to fully back-up your data and be prepared to investigate
problems with the migration, should they occur.

Please note:

• The migration only migrates the tracking table format and does not modify the backing file structure to support
folding. The DataJoint v0.12 logic is able to work with this format, but to take advantage of the new backend
storage, manual adjustment of the tracking table and files, or a full rebuild of the schema should be performed.

• Additional care to ensure all clients are using v0.12 should be taken after the upgrade. Legacy clients may
incorrectly create data in the old format which would then need to be combined or otherwise reconciled with
the data in v0.12 format. You might wish to take the opportunity to version-pin your installations so that future
changes requiring controlled upgrades can be coordinated on a system wide basis.

2.6 Backups and Recovery

Backing up your DataJoint installation is critical to ensuring that your work is safe and can be continued in the event
of system failures, and several mechanisms are available to use.

Much like your live installation, your backup will consist of two portions:

• Backup of the Relational Data

• Backup of optional external bulk storage

This section primarily deals with backup of the relational data since most of the optional bulk storage options use
“regular” flat-files for storage and can be backed up via any “normal” disk backup regime.

There are many options to backup MySQL; subsequent sections discuss a few options.

2.6.1 Cloud hosted backups

In the case of cloud-hosted options, many cloud vendors provide automated backup of your data, and some facility for
downloading such backups externally. Due to the wide variety of cloud-specific options, discussion of these options
falls outside of the scope of this documentation. However, since the cloud server is also a MySQL server, other options
listed here may work for your situation.

2.6.2 Disk-based backup

The simplest option for many cases is to perform a disk-level backup of your MySQL installation using standard disk
backup tools. It should be noted that all database activity should be stopped for the duration of the backup to prevent
errors with the backed up data. This can be done in one of two ways:

• Stopping the MySQL server program

• Using database locks

These methods are required since MySQL data operations can be ongoing in the background even when no user
activity is ongoing. To use a database lock to perform a backup, the following commands can be used as the MySQL
administrator:

FLUSH TABLES WITH READ LOCK;
UNLOCK TABLES;

The backup should be performed between the issuing of these two commands, ensuring the database data is consistent
on disk when it is backed up.
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2.6.3 MySQLDump

Disk based backups may not be feasible for every installation, or a database may require constant activity such that
stopping it for backups is not feasible. In such cases, the simplest option is MySQLDump, a command line tool that
prints the contents of your database contents in SQL form.

This tool is generally acceptable for most cases and is especially well suited for smaller installations due to its sim-
plicity and ease of use.

For larger installations, the lower speed of MySQLDump can be a limitation, since it has to convert the database con-
tents to and from SQL rather than dealing with the database files directly. Additionally, since backups are performed
within a transaction, the backup will be valid up to the time the backup began rather than to its completion, which can
make ensuring that the latest data are fully backed up more difficult as the time it takes to run a backup grows.

2.6.4 Percona XTraBackup

The Percona xtrabackup tool provides near-realtime backup capability of a MySQL installation, with extended
support for replicated databases, and is a good tool for backing up larger databases.

However, this tool requires local disk access as well as reasonably fast backup media, since it builds an ongoing
transaction log in real time to ensure that backups are valid up to the point of their completion. This strategy fails if it
cannot keep up with the write speed of the database. Further, the backups it generates are in binary format and include
incomplete database transactions, which require careful attention to detail when restoring.

As such, this solution is recommended only for advanced use cases or larger databases where limitations of the other
solutions may apply.

2.6.5 Locking and DDL issues

One important thing to note is that at the time of writing, MySQL’s transactional system is not
data definition language aware, meaning that changes to table structures occurring during some backup

schemes can result in corrupted backup copies. If schema changes will be occurring during your backup window,
it is a good idea to ensure that appropriate locking mechanisms are used to prevent these changes during critical steps
of the backup process.

However, on busy installations which cannot be stopped, the use of locks in many backup utilities may cause issues if
your programs expect to write data to the database during the backup window.

In such cases it might make sense to review the given backup tools for locking related options or to use other mecha-
nisms such as replicas or alternate backup tools to prevent interaction of the database.

2.6.6 Replication and snapshots for backup

Larger databases consisting of many Terabytes of data may take many hours or even days to backup and restore, and
so downtime resulting from system failure can create major impacts to ongoing work.

While not backup tools per-se, use of MySQL master-slave replication and disk snapshots can be useful to assist in
reducing the downtime resulting from a full database outage.

Replicas can be configured so that one copy of the data is immediately online in the event of server crash. When a
server fails in this case, users and programs simply restart and point to the new server before resuming work.

Replicas can also reduce the system load generated by regular backup procedures, since they can be backed up instead
of the main server. Additionally they can allow more flexibility in a given backup scheme, such as allowing for disk
snapshots on a busy system that would not otherwise be able to be stopped. A replica copy can be stopped temporarily
and then resumed while a disk snapshot or other backup operation occurs.
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CHAPTER

THREE

CLIENT SETUP

3.1 Install and Connect

1. Download the DataJoint MATLAB Toolbox from the MATLAB Central FileExchange.

2. Open DataJoint.mltbx and follow installation instructions.

3. After installation, verify from MATLAB that you have the latest version of DataJoint (3.0.0 or above):

>> dj.version
DataJoint version 3.0.0

4. At the MATLAB command prompt, assign the environment variables with the database credentials. For ex-
ample, if you are connection to the server alicelab.datajoint.io with username alice and password

haha not my real password , execute the following commands:

setenv DJ_USER alice
setenv DJ_HOST alicelab.datajoint.io
setenv DJ_PASS 'haha not my real password'

You will need to execute these commands at the beginning of each DataJoint work session. To automate this process,
you might like to use the startup.m script.

However, be careful not to share this file or commit it to a public directory (a common mistake), as it contains a your
login credentials in plain text. If you are not sure, it is better not to set DJ_PASS , in which case DataJoint will prompt
to enter the password when connecting to the database.

To change the database password, use the following command

>> dj.setPassword('my#cool!new*psswrd')

And update your credentials in your startup script for the next session.

3.2 Other Configuration Settings

If you are not using DataJoint on your own, or are setting up a DataJoint system for other users, some additional
configuraiton options may be required to support TLS or external storage .
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3.2.1 TLS Configuration

Starting with v0.12 (Python) and v3.3.1 (MATLAB), DataJoint will by default use TLS if it is available. TLS can be
forced on or off with the boolean use_tls in MATLAB, or dj.config['database.use_tls'] in Python.

3.3 DataJoint Python Windows Install Guide

This document outlines the steps necessary to install DataJoint on Windows for use in connecting to a remote server
hosting a DataJoint database. Some limited discussion of installing MySQL is discussed in MySQL for Windows, but
is not covered in-depth since this is an uncommon usage scenario and not strictly required to connect to DataJoint
pipelines.

3.3.1 Quick steps

Quick install steps for advanced users are as follows:

• Install latest Python 3.x and ensure it is in PATH (3.6.3 current at time of writing)

• pip install datajoint

For ERD drawing support:

• Install Graphviz for Windows and ensure it is in PATH (64 bit builds currently tested; URL below.)

• pip install pydotplus matplotlib

Detailed instructions follow.

3.3.2 Step 1: install Python

Python for Windows is available from:

https://www.python.org/downloads/windows

The latest 64 bit 3.x version, currently 3.6.3, is available from the Python site.

From here run the installer to install Python.

For a single-user machine, the regular installation process is sufficient - be sure to select the Add Python to PATH
option:
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For a shared machine, run the installer as administrator (right-click, run as administrator) and select the advanced
installation. Be sure to select options as follows:
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3.3.3 Step 2: verify installation

To verify the Python installation and make sure that your system is ready to install DataJoint, open a command window
by entering cmd into the Windows search bar:
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From here python and the Python package manager pip can be verified by running python -V and pip -V ,
respectively:
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If you receive the error message that either pip or python is not a recognized command, please uninstall Python
and ensure that the option to add Python to the PATH variable was properly configured.

3.3.4 Step 3: install DataJoint

DataJoint (and other Python modules) can be easily installed using the pip Python package manager which is in-
stalled as a part of Python and was verified in the previous step.

To install DataJoint simply run pip install datajoint :

This will proceed to install DataJoint, along with several other required packages from the PIP repository. When
finished, a summary of the activity should be presented:
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Note: You can find out more about the packages installed here and many other freely available open source packages
via pypi, the Python package index site.

3.3.5 (Optional) step 4: install packages for ERD support

To draw ERD diagrams of your DataJoint schema, the following additional steps should be followed.

Install Graphviz

DataJoint currently utilizes Graphviz to generate the ERD visualizations. Although a Windows version of Graphviz is
available from the main site, it is an older and out of date 32-bit version. The recommended pre-release builds of the
64 bit version are available here:

https://ci.appveyor.com/project/ellson/graphviz-pl238

More specifically, the build artifacts from the Win64; Configuration: Release are recommended, available
here.

This is a regular Windows installer executable, and will present a dialog when starting:
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It is important that an option to place Graphviz in the PATH be selected.

For a personal installation:

To install system wide:
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Once installed, Graphviz can be verified from a fresh command window as follows:

If you receive the error message that the dot program is not a recognized command, please uninstall Graphviz and
ensure that the option to add Python to the PATH variable was properly configured.

Important: in some cases, running the dot -c command in a command prompt is required to properly initialize
the Graphviz installation.
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Install PyDotPlus

The PyDotPlus library links the Graphviz installation to DataJoint and is easily installed via pip :

Install Matplotlib

The Matplotlib library provides useful plotting utilities which are also used by DataJoint’s ERD drawing facility. The
package is easily installed via pip :
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3.3.6 (Optional) step 5: install Jupyter Notebook

As described on the jupyter.org website:

‘The Jupyter Notebook is an open-source web application that allows you to create and share documents
that contain live code, equations, visualizations and narrative text.’

Although not a part of DataJoint, Jupyter Notebook can be a very useful tool for building and interacting with DataJoint
pipelines. It is easily installed from pip as well:

Once installed, Jupyter Notebook can be started via the jupyter notebook command, which should now be on
your path:
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By default Jupyter Notebook will start a local private webserver session from the directory where it was started and
start a web browser session connected to the session.
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You now should be able to use the notebook viewer to navigate the filesystem and to create new project folders and
interactive Jupyter/Python/DataJoint notebooks.

3.3.7 Git for Windows

The Git version control system is not a part of DataJoint but is recommended for interacting with the broader
Python/Git/GitHub sharing ecosystem.

The Git for Windows installer is available from https://git-scm.com/download/win.
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The default settings should be sufficient and correct in most cases.

3.3.8 MySQL for Windows

For hosting pipelines locally, the MySQL server package is required.

MySQL for windows can be installed via the installers available from the MySQL website. Please note that although
DataJoint should be fully compatible with a Windows MySQL server installation, this mode of operation is not tested
by the DataJoint team.
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CHAPTER

FOUR

CONCEPTS

4.1 Data Model

4.1.1 What is a data model?

A data model refers to a conceptual framework for thinking about data and about operations on data. A data model
defines the mental toolbox of the data scientist; it has less to do with the architecture of the data systems, although
architectures are often intertwined with data models.

Among the most familiar data models are those based on files and folders: data of any kind are lumped together into
binary strings called files, files are collected into folders, and folders can be nested within other folders to create a
folder hierarchy.

Another family of data models are various tabular models. For example, items in CSV files are listed in rows, and
the attributes of each item are stored in columns. Various spreadsheet models allow forming dependencies between
cells and groups of cells, including complex calculations.

The object data model is common in programming, where data are represented as objects in memory with properties
and methods for transformations of such data.

4.1.2 Relational data model

The relational model is a way of thinking about data as sets and operations on sets. Formalized almost a half-century
ago (Codd, 1969), the relational data model provides the most rigorous approach to structured data storage and the most
precise approach to data querying. The model is defined by the principles of data representation, domain constraints,
uniqueness constraints, referential constraints, and declarative queries as summarized below.

Core principles of the relational data model

Data representation. Data are represented and manipulated in the form of relations. A relation is a set (i.e. an
unordered collection) of entities of values for each of the respective named attributes of the relation. Base
relations represent stored data while derived relations are formed from base relations through query expressions.
A collection of base relations with their attributes, domain constraints, uniqueness constraints, and referential
constraints is called a schema.

Domain constraints. Attribute values are drawn from corresponding attribute domains, i.e. predefined sets of values.
Attribute domains may not include relations, which keeps the data model flat, i.e. free of nested structures.

Uniqueness constraints. Entities within relations are addressed by values of their attributes. To identify and relate
data elements, uniqueness constraints are imposed on subsets of attributes. Such subsets are then referred to as
keys. One key in a relation is designated as the primary key used for referencing its elements.
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Referential constraints. Associations among data are established by means of referential constraints with the help of
foreign keys. A referential constraint on relation A referencing relation B allows only those entities in A whose
foreign key attributes match the key attributes of an entity in B.

Declarative queries. Data queries are formulated through declarative, as opposed to imperative, specifications of
sought results. This means that query expressions convey the logic for the result rather than the procedure for
obtaining it. Formal languages for query expressions include relational algebra, relational calculus, and SQL.

The relational model has many advantages over both hierarchical file systems and tabular models for maintaining data
integrity and providing flexible access to interesting subsets of the data.

Popular implementations of the relational data model rely on the Structured Query Language (SQL). SQL comprises
distinct sublanguages for schema definition, data manipulation, and data queries. SQL thoroughly dominates in the
space of relational databases and is often conflated with the relational data model in casual discourse. Various termi-
nologies are used to describe related concepts from the relational data model. Similar to spreadsheets, relations are
often visualized as tables with attributes corresponding to columns and entities corresponding to rows. In particular,
SQL uses the terms table, column, and row.

4.1.3 DataJoint is a refinement of the relational data model

DataJoint is a conceptual refinement of the relational data model offering a more expressive and rigorous framework
for database programming (Yatsenko et al., 2018). The DataJoint model facilitates clear conceptual modeling, efficient
schema design, and precise and flexible data queries. The model has emerged over a decade of continuous development
of complex data pipelines for neuroscience experiments (Yatsenko et al., 2015). DataJoint has allowed researchers
with no prior knowledge of databases to collaborate effectively on common data pipelines sustaining data integrity
and supporting flexible access. DataJoint is currently implemented as client libraries in MATLAB and Python. These
libraries work by transpiling DataJoint queries into SQL before passing them on to conventional relational database
systems that serve as the backend, in combination with bulk storage systems for storing large contiguous data objects.

DataJoint comprises:

• a schema definition language

• a data manipulation language

• a data query language

• a diagramming notation for visualizing relationships between modeled entities

The key refinement of DataJoint over other relational data models and their implementations is DataJoint’s support of
entity normalization.

4.2 Terminology

DataJoint introduces a principled data model, which is described in detail in Yatsenko et al., 2018. This data model is
a conceptual refinement of the Relational Data Model and also draws on the Entity-Relationship Model (ERM).

The Relational Data Model was inspired by the concepts of relations in Set Theory. When the formal relational
data model was formulated, it introduced additional terminology (e.g. relation, attribute, tuple, domain). Practical
programming languages such as SQL do not precisely follow the relational data model and introduce other terms to
approximate relational concepts (e.g. table, column, row, datatype). Subsequent data models (e.g. ERM) refined the
relational data model and introduced their own terminology to describe analogous concepts (e.g. entity set, relationship
set, attribute set). As a result, similar concepts may be described using different sets of terminologies, depending on
the context and the speaker’s background.

For example, what is known as a relation in the formal relational model is called a table in SQL; the analogous
concept in ERM and DataJoint is called an entity set.
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The DataJoint documentation follows the terminology defined in Yatsenko et al, 2018, except entity set is replaced
with the more colloquial table or query result in most cases.

The table below summarizes the terms used for similar concepts across the related data models.

Table 1: Data model terminology
Relational ERM SQL DataJoint (formal) This manual
relation entity set table entity set table
tuple entity row entity entity
domain value set datatype datatype datatype
attribute attribute column attribute attribute
attribute value attribute value field value attribute value attribute value
primary key primary key primary key primary key primary key
foreign key foreign key foreign key foreign key foreign key
schema schema schema or database schema schema
relational expres-
sion

data query SELECT statement query expression query expression

4.2.1 DataJoint: databases, schemas, packages, and modules

A database is collection of tables on the database server. DataJoint users do not interact with it directly.

A DataJoint schema is

• a database on the database server containing tables with data and

• a collection of classes (in MATLAB or Python) associated with the database, one class for each table.

In MATLAB, the collection of classes is organized as a package, i.e. a file folder starting with a + .

In Python, the collection of classes is any set of classes decorated with the appropriate schema object. Very com-
monly classes for tables in one database are organized as a distinct Python module. Thus, typical DataJoint projects
have one module per database. However, this organization is up to the user’s discretion.

4.2.2 Base tables

Base tables are tables stored in the database, and are often referred to simply as tables in DataJoint. Base tables are
distinguished from derived tables, which result from relational operators.

4.2.3 Relvars and relation values

Early versions of the DataJoint documentation referred to the relation objects as relvars https://en.wikipedia.org/wiki/
Relvar. This term emphasizes the fact that relational variables and expressions do not contain actual data but are
rather symbolic representations of data to be retrieved from the database. The specific value of a relvar would then be
referred to as the relation value. The value of a relvar can change with changes in the state of the database.

The more recent iteration of the documentation has grown less pedantic and more often uses the term table instead.
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4.2.4 Metadata

The vocabulary of DataJoint does not include this term.

In data science, the term metadata commonly means “data about the data” rather than the data themselves. For
example, metadata could include data sizes, timestamps, data types, indexes, keywords.

In contrast, neuroscientists often use the term to refer to conditions and annotations about experiments. This distinction
arose when such information was stored separately from experimental recordings, such as in physical notebooks. Such
“metadata” are used to search and to classify the data and are in fact an integral part of the actual data.

In DataJoint, all data other than blobs can be used in searches and categorization. These fields may originate from
manual annotations, preprocessing, or analyses just as easily as from recordings or behavioral performance. Since
“metadata” in the neuroscience sense are not distinguished from any other data in a pipeline, DataJoint avoids the term
entirely. Instead, DataJoint differentiates data into data tiers.

4.3 Entity Normalization

DataJoint uses a uniform way of representing any data. It does so in the form of entity sets, unordered collections
of entities of the same type. The term entity normalization describes the commitment to represent all data as well-
formed entity sets. Entity normalization is a conceptual refinement of the relational data model and is the central
principle of the DataJoint model (Yatsenko et al., 2018). Entity normalization leads to clear and logical database
designs and to easily comprehensible data queries.

Entity sets are a type of relation (from the relational data model) and are often visualized as tables. Hence the terms
relation, entity set, and table can be used interchangeably when entity normalization is assumed.

4.3.1 Criteria of a well-formed entity set

1. All elements of an entity set belong to the same well-defined and readily identified entity type from the model
world.

2. All attributes of an entity set are applicable directly to each of its elements, although some attribute values may
be missing (set to null).

3. All elements of an entity set must be distinguishable form each other by the same primary key.

4. Primary key attribute values cannot be missing, i.e. set to null.

5. All elements of an entity set participate in the same types of relationships with other entity sets.

4.3.2 Entity normalization in schema design

Entity normalization applies to schema design in that the designer is responsible for the identification of the essential
entity types in their model world and of the dependencies among the entity types.

The term entity normalization may also apply to a procedure for refactoring a schema design that does not meet the
above criteria into one that does. In some cases, this may require breaking up some entity sets into multiple entity
sets, which may cause some entities to be represented across multiple entity sets. In other cases, this may require
converting attributes into their own entity sets. Technically speaking, entity normalization entails compliance with the
Boyce-Codd normal form while lacking the representational power for the applicability of more complex normal forms
(Kent, 1983). Adherence to entity normalization prevents redundancies in storage and data manipulation anomalies.
The same criteria originally motivated the formulation of the classical relational normal forms.
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4.3.3 Entity normalization in data queries

Entity normalization applies to data queries as well. DataJoint’s query operators are designed to preserve the entity
normalization of their inputs. For example, the outputs of operators restriction, proj, and aggr retain the same entity
type as the (first) input. The join operator produces a new entity type comprising the pairing of the entity types of its
inputs. Universal sets explicitly introduce virtual entity sets when necessary to accomplish a query.

4.3.4 Examples of poor normalization

Design choices lacking entity normalization may lead to data inconsistencies or anomalies. Below are several examples
of poorly normalized designs and their normalized alternatives.

Indirect attributes

All attributes should apply to the entity itself. Avoid attributes that actually apply to one of the entity’s
other attributes. For example, consider the table Author with attributes author_name , institution , and
institution_address . The attribute institution_address should really be held in a separate Institution

table that Author depends on.

Repeated attributes

Avoid tables with repeated attributes of the same category. A better solution is to create a separate table that depends
on the first (often a part table), with multiple individual entities rather than repeated attributes. For example, consider
the table Protocol that includes the attributes equipment1`, ``equipment2 , and equipment3 . A better
design would be to create a ProtocolEquipment table that links each entity in Protocol with multiple entities in
Equipment through dependencies.

Attributes that do not apply to all entities

All attributes should be relevant to every entity in a table. Attributes that apply only to a subset of entities in a table
likely belong in a separate table containing only that subset of entities. For example, a table Protocol should include
the attribute stimulus only if all experiment protocols include stimulation. If the not all entities in Protocol
involve stimulation, then the stimulus attribute should be moved to a part table that has Protocol as its master.
Only protocols using stimulation will have an entry in this part table.

Transient attributes

Attributes should be relevant to all entities in a table at all times. Attributes that do not apply to all entities should
be moved to another dependent table containing only the appropriate entities. This principle also applies to attributes
that have not yet become meaningful for some entities or that will not remain meaningful indefinitely. For example,
consider the table Mouse with attributes birth_date and death_date , where death_date is set to NULL for
living mice. Since the death_date attribute is not meaningful for mice that are still living, the proper design would
include a separate table DeceasedMouse that depends on Mouse . DeceasedMouse would only contain entities
for dead mice, which improves integrity and averts the need for updates.
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4.4 Data Integrity

The term data integrity describes guarantees made by the data management process that prevent errors and corruption
in data due to technical failures and human errors arising in the course of continuous use by multiple agents. DataJoint
pipelines respect the following forms of data integrity: entity integrity, referential integrity, and group integrity as
described in more detail below.

4.4.1 Entity integrity

In a proper relational design, each table represents a collection of discrete real-world entities of some kind. Entity
integrity is the guarantee made by the data management process that entities from the real world are reliably and
uniquely represented in the database system. Entity integrity states that the data management process must prevent
duplicate representations or misidentification of entities. DataJoint enforces entity integrity through the use of primary
keys.

Entity integrity breaks down when a process allows data pertaining to the same real-world entity to be entered into the
database system multiple times. For example, a school database system may use unique ID numbers to distinguish
students. Suppose the system automatically generates an ID number each time a student record is entered into the
database without checking whether a record already exists for that student. Such a system violates entity integrity,
because the same student may be assigned multiple ID numbers. The ID numbers succeed in uniquely identifying
each student record but fail to do so for the actual students.

Note that a database cannot guarantee or enforce entity integrity by itself. Entity integrity is a property of the en-
tire data management process as a whole, including institutional practices and user actions in addition to database
configurations.

4.4.2 Referential integrity

Referential integrity is the guarantee made by the data management process that related data across the database
remain present, correctly associated, and mutually consistent. Guaranteeing referential integrity means enforcing the
constraint that no entity can exist in the database without all the other entities on which it depends. Referential integrity
cannot exist without entity integrity: references to entity cannot be validated if the identity of the entity itself is not
guaranteed.

Referential integrity fails when a data management process allows new data to be entered that refers to other data
missing from the database. For example, assume that each electrophysiology recording must refer to the mouse
subject used during data collection. Perhaps an experimenter attempts to insert ephys data into the database that refers
to a nonexistent mouse, due to a misspelling. A system guaranteeing referential integrity, such as DataJoint, will refuse
the erroneous data.

Enforcement of referential integrity does not stop with data ingest. Deleting data in DataJoint also deletes any depen-
dent downstream data. Such cascading deletions are necessary to maintain referential integrity. Consider the deletion
of a mouse subject without the deletion of the experimental sessions involving that mouse. A database that allows such
deletion will break referential integrity, as the experimental sessions for the removed mouse depend on missing data.
Any data management process that allows data to be deleted with no consideration of dependent data cannot maintain
referential integrity.

Updating data already present in a database system also jeopardizes referential integrity. For this reason, the DataJoint
workflow does not include updates to entities once they have been ingested into a pipeline. Allowing updates to
upstream entities would break the referential integrity of any dependent data downstream. For example, permitting
a user to change the name of a mouse subject would invalidate any experimental sessions that used that mouse,
presuming the mouse name was part of the primary key. The proper way to change data in DataJoint is to delete the
existing entities and to insert corrected ones, preserving referential integrity.
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4.4.3 Group integrity

Group integrity denotes the guarantee made by the data management process that entities composed of multiple parts
always appear in their complete form. Group integrity in DataJoint is formalized through master-part relationships.
The master-part relationship has important implications for dependencies, because a downstream entity depending on
a master entity set may be considered to depend on the parts as well.

4.4.4 Relationships

In DataJoint, the term relationship is used rather generally to describe the effects of particular configurations of
dependencies between multiple entity sets. It is often useful to classify relationships as one-to-one, many-to-one,
one-to-many, and many-to-many.

In a one-to-one relationship, each entity in a downstream table has exactly one corresponding entity in the upstream
table. A dependency of an entity set containing the death dates of mice on an entity set describing the mice themselves
would obviously be a one-to-one relationship, as in the example below.

+test/Mouse.m

%{
mouse_name : varchar(64)
---
mouse_dob : datetime
%}

classdef Mouse < dj.Manual
end

+test/MouseDeath.m

%{
-> test.Mouse
---
death_date : datetime
%}

classdef MouseDeath < dj.Manual
end

In a one-to-many relationship, multiple entities in a downstream table may depend on the same entity in the up-
stream table. The example below shows a table containing individual channel data from multi-channel recordings,
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representing a one-to-many relationship.

+test/EEGRecording.m

%{
-> test.Session
eeg_recording_id : int
---
eeg_system : varchar(64)
num_channels : int
%}

classdef EEGRecording < dj.Manual
end

+test/ChannelData.m

%{
-> test.EEGRecording
channel_idx : int
---
channel_data : longblob
%}

classdef ChannelData < dj.Imported
end

In a many-to-one relationship, each entity in a table is associated with multiple entities from another table. Many-to-
one relationships between two tables are usually established using a separate membership table. The example below
includes a table of mouse subjects, a table of subject groups, and a membership part table listing the subjects in each
group. A many-to-one relationship exists between the Mouse table and the SubjectGroup table, with is expressed

through entities in GroupMember .

+test/Mouse.m

%{
mouse_name : varchar(64)
---
mouse_dob : datetime
%}

(continues on next page)

50 Chapter 4. Concepts



DataJoint User Manual, Release matlab-v3.4

(continued from previous page)

classdef Mouse < dj.Manual
end

+test/SubjectGroup.m

%{
group_number : int
---
group_name : varchar(64)
%}

classdef SubjectGroup < dj.Manual
end

+test/SubjectGroupGroupMember.m

%{
-> test.SubjectGroup
-> test.Mouse
%}

classdef SubjectGroupGroupMember < dj.Part
end

In a many-to-many relationship, multiple entities in one table may each relate to multiple entities in another upstream
table. Many-to-many relationships between two tables are usually established using a separate association table. Each
entity in the association table links one entity from each of the two upstream tables it depends on. The below example
of a many-to-many relationship contains a table of recording modalities and a table of multimodal recording sessions.
Entities in a third table represent the modes used for each session.

+test/RecordingModality.m

%{
modality : varchar(64)
%}

classdef RecordingModality < dj.Lookup
end

+test/MultimodalSession.m
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%{
-> test.Session
modes : int
%}

classdef MultimodalSession < dj.Manual
end

+test/MultimodalSessionSessionMode.m

%{
-> test.MultimodalSession
-> test.RecordingModality
%}

classdef MultimodalSessionSessionMode < dj.Part
end

The types of relationships between entity sets are expressed in the ERD of a schema.
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FIVE

DATA DEFINITION

5.1 Creating Schemas

5.1.1 Schemas

On the database server, related tables are grouped into a named collection called a schema. This grouping organizes
the data and allows control of user access. A database server may contain multiple schemas each containing a subset
of the tables. A single pipeline may comprise multiple schemas. Tables are defined within a schema, so a schema must
be created before the creation of any tables.

A schema can be created either automatically using the dj.createSchema script or manually. While

dj.createSchema simplifies the process, the manual approach yields a better understanding of what actually takes
place, so both approaches are listed below.

Manual

Step 1. Create the database schema

Use the following command to create a new schema on the database server:

query(dj.conn, 'CREATE SCHEMA `alice_experiment`')

Note that you must have create privileges for the schema name pattern (as described in Database Server Hosting). It
is a common practice to grant all privileges to users for schemas that begin with the username, in addition to some
shared schemas. Thus the user alice would be able to perform any work in any schema that begins with alice_ .

Step 2. Create the MATLAB package

DataJoint organizes schemas as MATLAB packages. If you are not familiar with packages, please review:

• How to work with MATLAB packages

• How to manage MATLAB’s search paths

In your project directory, create the package folder, which must begin with a + sign. For example, for the schema
called experiment , you would create the folder +experiment . Make sure that your project directory (the parent
directory of your package folder) is added to the MATLAB search path.

Step 3. Associate the package with the database schema

This step tells DataJoint that all classes in the package folder +experiment will work with tables in the database
schema alice_experiment . Each package corresponds to exactly one schema. In some special cases, multiple
packages may all relate to a single database schema, but in most cases there will be a one-to-one relationship between
packages and schemas.
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In the +experiment folder, create the file getSchema.m with the following contents:

function obj = getSchema
persistent OBJ
if isempty(OBJ)

OBJ = dj.Schema(dj.conn, 'experiment', 'alice_experiment');
end
obj = OBJ;
end

This function returns a persistent object of type dj.Schema , establishing the link between the experiment package
in MATLAB and the schema alice_experiment on the database server.

Automatic

Alternatively, you can execute

>> dj.createSchema

This automated script will walk you through the steps 1–3 above and will create the schema, the package folder, and
the getSchema function in that folder.

5.1.2 Working with existing data

See the chapter Work with Existing Pipelines for how to work with data in existing pipelines, including accessing a
pipeline from one language when the pipeline was developed using another.

5.2 Creating Tables

5.2.1 Classes represent tables

To make it easy to work with tables in MATLAB and Python, DataJoint programs create a separate class for
each table. Computer programmers refer to this concept as object-relational mapping. For example, the class
experiment.Subject in the DataJoint client language may correspond to the table called subject on the

database server. Users never need to see the database directly; they only interact with data in the database by cre-
ating and interacting with DataJoint classes.

Data tiers

The table class must inherit from one of the following superclasses to indicate its data tier: dj.Lookup , dj.Manual ,

dj.Imported , dj.Computed , or dj.Part . See Data Tiers and Master-Part Relationship.
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5.2.2 Defining a table

DataJoint provides the interactive script dj.new for creating a new table. It will prompt to enter the new table’s class

name in the form package.ClassName . This will create the file +package/ClassName.m .

For example, define the table experiment.Person

>> dj.new
Enter <package>.<ClassName>: experiment.Person

Choose table tier:
L=lookup
M=manual
I=imported
C=computed
P=part
(L/M/I/C/P) > M

This will create the file +experiment/Person.m with the following contents:

%{
# my newest table
# add primary key here
-----
# add additional attributes
%}

classdef Person < dj.Manual
end

While dj.new adds a little bit of convenience, some users may create the classes from scratch manually.

Each newly created class must inherit from the DataJoint class corresponding to the correct data tier: dj.Lookup ,

dj.Manual , dj.Imported or dj.Computed .

The most important part of the table definition is the comment preceding the classdef . DataJoint will parse this
comment to define the table.

The class will become usable after you edit this comment as described in Table Definition.

5.2.3 Valid class names

Note that in both MATLAB and Python, the class names must follow the CamelCase compound word notation:

• start with a capital letter and

• contain only alphanumerical characters (no underscores).

Examples of valid class names:

TwoPhotonScan , Scan2P , Ephys , MembraneVoltage

Invalid class names:

Two_photon_Scan , twoPhotonScan , 2PhotonScan , membranePotential , membrane_potential
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5.3 Table Definition

DataJoint models data as sets of entities with shared attributes, often visualized as tables with rows and columns.
Each row represents a single entity and the values of all of its attributes. Each column represents a single attribute with
a name and a datatype, applicable to entity in the table. Unlike rows in a spreadsheet, entities in DataJoint don’t have
names or numbers: they can only be identified by the values of their attributes. Defining a table means defining the
names and datatypes of the attributes as well as the constraints to be applied to those attributes. Both MATLAB and
Python use the same syntax define tables.

For example, the following code in defines the table User , that contains users of the database:

The table definition is contained in the first block comment in the class definition file. Note that although it looks like
a mere comment, the table definition is parsed by DataJoint. This solution is thought to be convenient since MATLAB
does not provide convenient syntax for multiline strings.

%{
# database users
username : varchar(20) # unique user name
---
first_name : varchar(30)
last_name : varchar(30)
role : enum('admin', 'contributor', 'viewer')
%}
classdef User < dj.Manual
end

This defines the class User that creates the table in the database and provides all its data manipulation functionality.

5.3.1 Table creation on the database server

Users do not need to do anything special to have the table created in the database. The table is created upon the first
attempt to use the class for manipulating its data (e.g. inserting or fetching entities).

5.3.2 Changing the definition of an existing table

Once the table is created in the database, the definition string has no further effect. In other words, changing the
definition string in the class of an existing table will not actually update the table definition. To change the table
definition, one must first drop the existing table. This means that all the data will be lost, and the new definition will
be applied to create the new empty table.

Therefore, in the initial phases of designing a DataJoint pipeline, it is common to experiment with variations of the
design before populating it with substantial amounts of data.

It is possible to modify a table without dropping it. This topic is covered separately.
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5.3.3 Reverse-engineering the table definition

DataJoint objects provide the describe method, which displays the table definition used to define the table when it
was created in the database. This definition may differ from the definition string of the class if the definition string has
been edited after creation of the table.

Examples

s = describe(lab.User)

Furthermore, DataJoint provides the syncDef method to update the classdef file definition string for the table
with the definition in the actual table:

syncDef(lab.User) % updates the table definition in file +lab/User.m

5.4 Definition Syntax

The table definition consists of one or more lines. Each line can be one of the following:

• The optional first line starting with a # provides a description of the table’s purpose. It may also be thought of
as the table’s long title.

• A new attribute definition in any of the following forms (see Datatypes for valid datatypes):

name : datatype name : datatype # comment name = default : datatype

name = default : datatype # comment

• The divider --- (at least three hyphens) separating primary key attributes above from secondary attributes
below.

• A foreign key in the format -> ReferencedTable . (See Dependencies.)

For example, the table for Persons may have the following definition:

# Persons in the lab
username : varchar(16) # username in the database
---
full_name : varchar(255)
start_date : date # date when joined the lab

This will define the table with attributes username , full_name , and start_date , in which username is the
primary key.

5.4.1 Attribute names

Attribute names must be in lowercase and must start with a letter. They can only contain alphanumerical characters
and underscores. The attribute name cannot exceed 64 characters.

Valid attribute names first_name , two_photon_scan , scan_2p , two_photon_scan_

Invalid attribute names firstName , first name , 2photon_scan , two-photon_scan , TwoPhotonScan

Ideally, attribute names should be unique across all tables that are likely to be used in queries together. For example,
tables often have attributes representing the start times of sessions, recordings, etc. Such attributes must be uniquely
named in each table, such as session_start_time or recording_start_time .
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5.4.2 Default values

Secondary attributes can be given default values. A default value will be used for an attribute if no other value is
given at the time the entity is inserted into the table. Generally, default values are numerical values or character
strings. Default values for dates must be given as strings as well, contained within quotes (with the exception of
CURRENT_TIMESTAMP ). Note that default values can only be used when inserting as a mapping. Primary key at-

tributes cannot have default values (with the exceptions of auto_increment and CURRENT_TIMESTAMP attributes;
see Primary Key).

An attribute with a default value of NULL is called a nullable attribute. A nullable attribute can be thought of as
applying to all entities in a table but having an optional value that may be absent in some entities. Nullable attributes
should not be used to indicate that an attribute is inapplicable to some entities in a table (see Entity Normalization).
Nullable attributes should be used sparingly to indicate optional rather than inapplicable attributes that still apply to
all entities in the table. NULL is a special literal value and does not need to be enclosed in quotes.

Here are some examples of attributes with default values:

failures = 0 : int
due_date = "2020-05-31" : date
additional_comments = NULL : varchar(256)

5.5 Data Tiers

DataJoint assigns all tables to one of the following data tiers that differentiate how the data originate.

Table 1: Table tiers
Tier Superclass Description
Lookup dj.Lookup Small tables containing general facts and settings

of the data pipeline; not specific to any experiment
or dataset.

Manual dj.Manual Data entered from outside the pipeline, either by
hand or with external helper scripts.

Imported dj.Imported Data ingested automatically inside the pipeline but
requiring access to data outside the pipeline.

Computed dj.Computed Data computed automatically entirely inside the
pipeline.

Table data tiers indicate to database administrators how valuable the data are. Manual data are the most valuable, as
re-entry may be tedious or impossible. Computed data are safe to delete, as the data can always be recomputed from
within DataJoint. Imported data are safer than manual data but less safe than computed data because of dependency
on external data sources. With these considerations, database administrators may opt not to back up computed data,
for example, or to back up imported data less frequently than manual data.

The data tier of a table is specified by the superclass of its class. For example, the User class in Table Definition uses
the dj.Manual superclass. Therefore, the corresponding User table on the database would be of the Manual tier.
Furthermore, the classes for imported and computed tables have additional capabilities for automated processing as
described in Auto-populate.
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5.5.1 Internal conventions for naming tables

On the server side, DataJoint uses a naming scheme to generate a table name corresponding to a given class. The
naming scheme includes prefixes specifying each table’s data tier.

First, the name of the class is converted from CamelCase to snake_case (separation by underscores). Then the
name is prefixed according to the data tier.

• Manual tables have no prefix.

• Lookup tables are prefixed with # .

• Imported tables are prefixed with _ , a single underscore.

• Computed tables are prefixed with __ , two underscores.

For example:

The table for the class StructuralScan subclassing dj.Manual will be named structural_scan .

The table for the class SpatialFilter subclassing dj.Lookup will be named #spatial_filter .

Again, the internal table names including prefixes are used only on the server side. These are never visible to the user,
and DataJoint users do not need to know these conventions However, database administrators may use these naming
patterns to set backup policies or to restrict access based on data tiers.

5.5.2 Part tables

Part tables do not have their own tier. Instead, they share the same tier as their master table. The prefix for part tables
also differs from the other tiers. They are prefixed by the name of their master table, separated by two underscores.

For example, the table for the class Channel(dj.Part) with the master Ephys(dj.Imported) will be named

_ephys__channel .

5.6 Datatypes

DataJoint supports the following datatypes. To conserve database resources, use the smallest and most restrictive
datatype sufficient for your data. This also ensures that only valid data are entered into the pipeline.

5.6.1 Most common datatypes

• tinyint : an 8-bit integer number, ranging from -128 to 127.

• tinyint unsigned : an 8-bit positive integer number, ranging from 0 to 255.

• smallint : a 16-bit integer number, ranging from -32,768 to 32,767.

• smallint unsigned : a 16-bit positive integer, ranging from 0 to 65,535.

• int : a 32-bit integer number, ranging from -2,147,483,648 to 2,147,483,647.

• int unsigned : a 32-bit positive integer, ranging from 0 to 4,294,967,295.

• enum : one of several explicitly enumerated values specified as strings. Use this datatype instead of text strings
to avoid spelling variations and to save storage space. For example, the datatype for an anesthesia attribute
could be enum("urethane", "isoflurane", "fentanyl") . Do not use enums in primary keys due to the
difficulty of changing their definitions consistently in multiple tables.
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• date : date as 'YYYY-MM-DD' .

• time : time as 'HH:MM:SS' .

• datetime : Date and time to the second as 'YYYY-MM-DD HH:MM:SS'

• timestamp : Date and time to the second as 'YYYY-MM-DD HH:MM:SS' . The default value may be set to
CURRENT_TIMESTAMP . Unlike datetime , a timestamp value will be adjusted to the local time zone.

• char(N) : a character string up to N characters (but always takes the entire N bytes to store).

• varchar(N) : a text string of arbitrary length up to N characters that takes M+1 or M+2 bytes of storage,
where M is the actual length of each stored string.

• float : a single-precision floating-point number. Takes 4 bytes. Single precision is sufficient for many mea-
surements.

• double : a double-precision floating-point number. Takes 8 bytes. Because equality comparisons are error-
prone, neither float nor double should be used in primary keys.

• decimal(N,F) : a fixed-point number with N total decimal digits and F fractional digits. This datatype is
well suited to represent numbers whose magnitude is well defined and does not warrant the use of floating-point
representation or requires precise decimal representations (e.g. dollars and cents). Because of its well-defined
precision, decimal values can be used in equality comparison and be included in primary keys.

• longblob : arbitrary numeric array (e.g. matrix, image, structure), up to 4 GiB in size. Numeric arrays

are compatible between MATLAB and Python (NumPy). The longblob and other blob datatypes can be

configured to store data externally by using the blob@store syntax.

5.6.2 Less common (but supported) datatypes

• decimal(N,F) unsigned : same as decimal , but limited to nonnegative values.

• mediumint a 24-bit integer number, ranging from -8,388,608 to 8,388,607.

• mediumint unsigned : a 24-bit positive integer, ranging from 0 to 16,777,216.

• mediumblob : arbitrary numeric array, up to 16 MiB

• blob : arbitrary numeric array, up to 64 KiB

• tinyblob : arbitrary numeric array, up to 256 bytes (actually smaller due to header info).

5.6.3 Special DataJoint-only datatypes

These types abstract certain kinds of non-database data to facillitate use together with DataJoint.

• attach : a file attachment similar to email attachments facillitating sending/receiving an opaque data file
to/from a DataJoint pipeline.

• filepath@store : a filepath used to link non-DataJoint managed files into a DataJoint pipeline.
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5.6.4 Datatypes not (yet) supported

• binary

• text

• longtext

• bit

For additional information about these datatypes, see http://dev.mysql.com/doc/refman/5.6/en/data-types.html

5.7 External Data

5.7.1 File Attachment Datatype

Note: External storage is not yet implemented in MATLAB. The feature will be added in an upcoming release:
https://github.com/datajoint/datajoint-matlab/issues/143

Configuration & Usage

Corresponding to issue #480, the attach attribute type allows users to attach files into DataJoint schemas as
DataJoint-managed files. This is in contrast to traditional blobs which are encodings of programming language data
structures such as arrays.

The functionality is modeled after email attachments, where users attach a file along with a message and message
recipients have access to a copy of that file upon retrieval of the message.

For DataJoint attach attributes, DataJoint will copy the input file into a DataJoint store, hash the file contents,
and track the input file name. Subsequent fetch operations will transfer a copy of the file to the local directory
of the Python process and return a pointer to it’s location for subsequent client usage. This allows arbitrary files to
be uploaded or attached to a DataJoint schema for later use in processing. File integrity is preserved by checksum
comparison against the attachment data and verifying the contents during retrieval.

For example, given a localattach store:

dj.config['stores'] = {
'localattach': {
'protocol': 'file',
'location': '/data/attach'

}
}

A ScanAttachment table can be created:

@schema
class ScanAttachment(dj.Manual):

definition = """
-> Session
---
scan_image: attach@localattach # attached image scans
"""
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Files can be added using an insert pointing to the source file:

>>> ScanAttachment.insert1((0, '/input/image0.tif'))

And then retrieved to the current directory using fetch :

>>> s0 = (ScanAttachment & {'session_id': 0}).fetch1()
>>> s0
{'session_id': 0, 'scan_image': './image0.tif'}
>>> fh = open(s0['scan_image'], 'rb')
>>> fh
<_io.BufferedReader name='./image0.tif')

5.7.2 Filepath Datatype

Note: External storage is not yet implemented in MATLAB. The feature will be added in an upcoming release:
https://github.com/datajoint/datajoint-matlab/issues/143

Note: Filepath Datatype is available as a preview feature in DataJoint Python v0.12. This means that
the feature is required to be explicitly enabled. To do so, make sure to set the environment variable
FILEPATH_FEATURE_SWITCH=TRUE prior to use.

Configuration & Usage

Corresponding to issue #481, the filepath attribute type links DataJoint records to files already managed outside
of DataJoint. This can aid in sharing data with other systems such as allowing an image viewer application to directly
use files from a DataJoint pipeline, or to allow downstream tables to reference data which reside outside of DataJoint
pipelines.

To define a table using the filepath datatype, an existing DataJoint store should be created and then referenced in
the new table definition. For example, given a simple store:

dj.config['stores'] = {
'data': {
'protocol': 'file',
'location': '/data',
'stage': '/data'

}
}

we can define an ScanImages table as follows:

@schema
class ScanImages(dj.Manual):

definition = """
-> Session
image_id: int
---
image_path: filepath@data
"""
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This table can now be used for tracking paths within the /data local directory. For example:

>>> ScanImages.insert1((0, 0, '/data/images/image_0.tif'))
>>> (ScanImages() & {'session_id': 0}).fetch1(as_dict=True)
{'session_id': 0, 'image_id': 0, 'image_path': '/data/images/image_0.tif'}

As can be seen from the example, unlike blob records, file paths are managed as path locations to the underlying file.

Integrity Notes

Unlike other data in DataJoint, data in filepath records are deliberately intended for shared use outside of Data-

Joint. To help ensure integrity of filepath records, DataJoint will record a checksum of the file data on insert ,

and will verify this checksum on fetch . However, since the underlying file data may be shared with other applica-
tions, special care should be taken to ensure records stored in filepath attributes are not modified outside of the

pipeline, or, if they are, that records in the pipeline are updated accordingly. A safe method of changing filepath
data is as follows:

1) Delete the filepath database record.

This will ensure that any downstream records in the pipeline depending on the filepath record are purged
from the database.

2) Modify filepath data.

3) Re-insert corresponding the filepath record.

This will add the record back to DataJoint with an updated file checksum.

4) Compute any downstream dependencies, if needed.

This will ensure that downstream results dependent on the filepath record are updated to reflect the newer

filepath contents.

5.8 Primary Key

5.8.1 Primary keys in DataJoint

Entities in tables are neither named nor numbered. DataJoint does not answer questions of the type “What is the 10th
element of this table?” Instead, entities are distinguished by the values of their attributes. Furthermore, the entire
entity is not required for identification. In each table, a subset of its attributes are designated to be the primary key.
Attributes in the primary key alone are sufficient to differentiate any entity from any other within the table.

Each table must have exactly one primary key: a subset of its attributes that uniquely identify each entity in the table.
The database uses the primary key to prevent duplicate entries, to relate data across tables, and to accelerate data
queries. The choice of the primary key will determine how you identify entities. Therefore, make the primary key
short, expressive, and persistent.

For example, mice in our lab are assigned unique IDs. The mouse ID number animal_id of type smallint can
serve as the primary key for the table Mice . An experiment performed on a mouse may be identified in the table
Experiments by two attributes: animal_id and experiment_number .

DataJoint takes the concept of primary keys somewhat more seriously than other models and query languages. Even
table expressions, i.e. those tables produced through operations on other tables, have a well-defined primary key. All
operators on tables are designed in such a way that the results always have a well-defined primary key.
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In all representations of tables in DataJoint, the primary key attributes are always listed before other attributes and
highlighted for emphasis (e.g. in a bold font or marked with an asterisk *)

5.8.2 Defining a primary key

In table declarations, the primary key attributes always come first and are separated from the other attributes with a
line containing at least three hyphens. For example, the following is the definition of a table containing database users
where username is the primary key.

# database users
username : varchar(20) # unique user name
---
first_name : varchar(30)
last_name : varchar(30)
role : enum('admin', 'contributor', 'viewer')

5.8.3 Entity integrity

The primary key defines and enforces the desired property of databases known as entity integrity. Entity integrity
ensures that there is a one-to-one and unambiguous mapping between real-world entities and their representations in
the database system. The data management process must prevent any duplication or misidentification of entities.

To enforce entity integrity, DataJoint implements several rules: * Every table must have a primary key. * Primary
key attributes cannot have default values (with the exception of auto_increment and CURRENT_TIMESTAMP ; see
below). * Operators on tables are defined with respect to the primary key and preserve a primary key in their results.

5.8.4 Datatypes in primary keys

All integer types, dates, timestamps, and short character strings make good primary key attributes. Character strings
are somewhat less suitable because they can be long and because they may have invisible trailing spaces. Floating-
point numbers should be avoided because rounding errors may lead to misidentification of entities. Enums are okay as
long as they do not need to be modified after dependencies are already created referencing the table. Finally, DataJoint
does not support blob types in primary keys.

The primary key may be composite, i.e. comprising several attributes. In DataJoint, hierarchical designs often produce
tables whose primary keys comprise many attributes.

5.8.5 Choosing primary key attributes

A primary key comprising real-world attributes is a good choice when such real-world attributes are already properly
and permanently assigned. Whatever characteristics are used to uniquely identify the actual entities can be used to
identify their representations in the database.

If there are no attributes that could readily serve as a primary key, an artificial attribute may be created solely for the
purpose of distinguishing entities. In such cases, the primary key created for management in the database must also be
used to uniquely identify the entities themselves. If the primary key resides only in the database while entities remain
indistinguishable in the real world, then the process cannot ensure entity integrity. When a primary key is created as
part of data management rather than based on real-world attributes, an institutional process must ensure the uniqueness
and permanence of such an identifier.

For example, the U.S. government assigns every worker an identifying attribute, the social security number. However,
the government must go to great lengths to ensure that this primary key is assigned exactly once, by checking against
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other less convenient candidate keys (i.e. the combination of name, parents’ names, date of birth, place of birth, etc.).
Just like the SSN, well managed primary keys tend to get institutionalized and find multiple uses.

Your lab must maintain a system for uniquely identifying important entities. For example, experiment subjects and ex-
periment protocols must have unique IDs. Use these as the primary keys in the corresponding tables in your DataJoint
databases.

Using hashes as primary keys

Some tables include too many attributes in their primary keys. For example, the stimulus condition in a psychophysics
experiment may have a dozen parameters such that a change in any one of them makes a different valid stimulus
condition. In such a case, all the attributes would need to be included in the primary key to ensure entity integrity.
However, long primary keys make it difficult to reference individual entities. To be most useful, primary keys need to
be relatively short.

This problem is effectively solved through the use of a hash of all the identifying attributes as the primary key. For
example, MD5 or SHA-1 hash algorithms can be used for this purpose. To keep their representations human-readable,
they may be encoded in base-64 ASCII. For example, the 128-bit MD5 hash can be represented by 21 base-64 ASCII
characters, but for many applications, taking the first 8 to 12 characters is sufficient to avoid collisions.

auto_increment

Some entities are created by the very action of being entered into the database. The action of entering them into the
database gives them their identity. It is impossible to duplicate them since entering the same thing twice still means
creating two distinct entities.

In such cases, the use of an auto-incremented primary key is warranted. These are declared by adding the word
auto_increment after the data type in the declaration. The datatype must be an integer. Then the database will

assign incrementing numbers at each insert.

The example definition below defines an auto-incremented primary key

# log entries
entry_id : smallint auto_increment
---
entry_text : varchar(4000)
entry_time = CURRENT_TIMESTAMP : timestamp(3) # automatic timestamp with millisecond precision

DataJoint passes auto_increment behavior to the underlying MySQL and therefore it has the same limitation: it
can only be used for tables with a single attribute in the primary key.

If you need to auto-increment an attribute in a composite primary key, you will need to do so programmatically within
a transaction to avoid collisions.

For example, let’s say that you want to auto-increment scan_idx in a table called Scan whose primary key is
(animal_id, session, scan_idx) . You must already have the values for animal_id and session in the

dictionary key . Then you can do the following:

key.scan_idx = fetch1(Scan & key, 'max(scan_idx)+1 -> next')
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5.9 Dependencies

5.9.1 Understanding dependencies

A schema contains collections of tables of related data. Accordingly, entities in one table often derive some of their
meaning or context from entities in other tables. A foreign key defines a dependency of entities in one table on entities
in another within a schema. In more complex designs, dependencies can even exist between entities in tables from
different schemas. Dependencies play a functional role in DataJoint and do not simply label the structure of a pipeline.
Dependencies provide entities in one table with access to data in another table and establish certain constraints on
entities containing a foreign key.

A DataJoint pipeline, including the dependency relationships established by foreign keys, can be visualized as a graph
with nodes and edges. The diagram of such a graph is called the entity relationship diagram or ERD. The nodes of
the graph are tables and the edges connecting them are foreign keys. The edges are directed and the overall graph is a
directed acyclic graph, a graph with no loops.

For example, the ERD below is the pipeline for multipatching experiments
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The graph defines the direction of the workflow. The tables at the top of the flow need to be populated first, followed
by those tables one step below and so forth until the last table is populated at the bottom of the pipeline. The top of the
pipeline tends to be dominated by lookup tables (gray stars) and manual tables (green squares). The middle has many
imported tables (blue triangles), and the bottom has computed tables (red stars).
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5.9.2 Defining a dependency

Foreign keys are defined with arrows -> in the table definition, pointing to another table.

A foreign key may be defined as part of the Primary Key.

In the ERD, foreign keys from the primary key are shown as solid lines. This means that the primary key of the
referenced table becomes part of the primary key of the new table. A foreign key outside the primary key is indicated
by dashed line in the ERD.

For example, the following definition for the table mp.Slice has three foreign keys, including one within the primary
key.

# brain slice
-> mp.Subject
slice_id : smallint # slice number within subject
---
-> mp.BrainRegion
-> mp.Plane
slice_date : date # date of the slicing (not patching)
thickness : smallint unsigned # slice thickness in microns
experimenter : varchar(20) # person who performed this experiment

You can examine the resulting table heading with

show(mp.BrainSlice)

The heading of mp.Slice may look something like

subject_id : char(8) # experiment subject id
slice_id : smallint # slice number within subject
---
brain_region : varchar(12) # abbreviated name for brain region
plane : varchar(12) # plane of section
slice_date : date # date of the slicing (not patching)
thickness : smallint unsigned # slice thickness in microns
experimenter : varchar(20) # person who performed this experiment

This displayed heading reflects the actual attributes in the table. The foreign keys have been replaced by the primary
key attributes of the referenced tables, including their data types and comments.

5.9.3 How dependencies work

The foreign key -> A in the definition of table B has the following effects:

1. The primary key attributes of A are made part of B ’s definition.

2. A referential constraint is created in B with reference to A .

3. If one does not already exist, an index is created to speed up searches in B for matches to A . (The reverse
search is already fast because it uses the primary key of A .)

A referential constraint means that an entity in B cannot exist without a matching entity in A . Matching means
attributes in B that correspond to the primary key of A must have the same values. An attempt to insert an entity into
B that does not have a matching counterpart in A will fail. Conversely, deleting an entity from A that has matching

entities in B will result in the deletion of those matching entities and so forth, recursively, downstream in the pipeline.
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When B references A with a foreign key, one can say that B depends on A . In DataJoint terms, B is the
dependent table and A is the referenced table with respect to the foreign key from B to A .

Note: Note to those already familiar with the theory of relational databases: The usage of the words “depends” and
“dependency” here should not be confused with the unrelated concept of functional dependencies that is used to define
normal forms.

5.9.4 Referential integrity

Dependencies enforce the desired property of databases known as referential integrity. Referential integrity is the
guarantee made by the data management process that related data across the database remain present, correctly asso-
ciated, and mutually consistent. Guaranteeing referential integrity means enforcing the constraint that no entity can
exist in the database without all the other entities on which it depends. An entity in table B depends on an entity in
table A when they belong to them or are computed from them.

5.9.5 Dependencies with renamed attributes

In most cases, a dependency includes the primary key attributes of the referenced table as they appear in its table
definition. Sometimes it can be helpful to choose a new name for a foreign key attribute that better fits the context
of the dependent table. DataJoint provides the following projection syntax to rename the primary key attributes when
they are included in the new table.

The dependency

-> Table.project(new_attr='old_attr')

renames the primary key attribute old_attr of Table as new_attr before integrating it into the table definition.
Any additional primary key attributes will retain their original names. For example, the table Experiment may
depend on table User but rename the user attribute into operator as follows:

-> User.proj(operator='user')

In the above example, an entity in the dependent table depends on exactly one entity in the referenced table. Sometimes
entities may depend on multiple entities from the same table. Such a design requires a way to distinguish between
dependent attributes having the same name in the reference table. For example, a table for Synapse may reference
the table Cell twice as presynaptic and postsynaptic . The table definition may appear as

# synapse between two cells
-> Cell.proj(presynaptic='cell_id')
-> Cell.proj(postsynaptic='cell_id')
---
connection_strength : double # (pA) peak synaptic current

If the primary key of Cell is ( animal_id , slice_id , cell_id ), then the primary key of Synapse resulting
from the above definition will be ( animal_id , slice_id , presynaptic , postsynaptic ). Projection always
returns all of the primary key attributes of a table, so animal_id and slice_id are included, with their original
names.

Note that the design of the Synapse table above imposes the constraint that the synapse can only be found between
cells in the same animal and in the same slice.

Allowing representation of synapses between cells from different slices requires the renamimg of slice_id as well:
.. code-block:: text
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# synapse between two cells -> Cell(presynaptic_slice=’slice_id’, presynaptic_cell=’cell_id’) ->
Cell(postsynaptic_slice=’slice_id’, postsynaptic_cell=’cell_id’) — connection_strength : double # (pA)
peak synaptic current

In this case, the primary key of Synapse will be ( animal_id , presynaptic_slice , presynaptic_cell ,
postsynaptic_slice , postsynaptic_cell ). This primary key still imposes the constraint that synapses can

only form between cells within the same animal but now allows connecting cells across different slices.

In the ERD, renamed foreign keys are shown as red lines with an additional dot node in the middle to indicate that a
renaming took place.

5.9.6 Foreign key options

Note: Foreign key options are currently in development.

Foreign keys allow the additional options nullable and unique , which can be inserted in square brackets follow-
ing the arrow.

For example, in the following table definition

rig_id : char(4) # experimental rig
---
-> Person

each rig belongs to a person, but the table definition does not prevent one person owning multiple rigs. With the
unique option, a person may only appear once in the entire table, which means that no one person can own more

than one rig.

rig_id : char(4) # experimental rig
---
-> [unique] Person

With the nullable option, a rig may not belong to anyone, in which case the foreign key attributes for Person are
set to NULL :

rig_id : char(4) # experimental rig
---
-> [nullable] Person

Finally with both unique and nullable, a rig may or may not be owned by anyone and each person may own up to one
rig.

rig_id : char(4) # experimental rig
---
-> [unique, nullable] Person

Foreign keys made from the primary key cannot be nullable but may be unique.
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5.10 ERD

ERD stands for entity relationship diagram. Objects of type dj.ERD allow visualizing portions of the data pipeline
in graphical form. Tables are depicted as nodes and dependencies as directed edges between them. The draw method
plots the graph.

5.10.1 Diagram notation

Consider the following ERD
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DataJoint uses the following conventions:

• Tables are indicated as nodes in the graph. The corresponding class name is indicated by each node.

• Data tiers are indicated as colors and symbols: Lookup=gray asterisk, Manual=green square, Imported=blue
circle, Computed=red star, Part=black dot. The names of part tables are indicated in a smaller font.

• Dependencies are indicated as edges in the graph and always directed downward, forming a directed acyclic
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graph.

• Foreign keys contained within the primary key are indicated as solid lines. This means that the referenced table
becomes part of the primary key of the dependent table.

• Foreign keys that are outside the primary key are indicated by dashed lines.

• If the primary key of the dependent table has no other attributes besides the foreign key, the foreign key is a
thick solid line, indicating a 1:{0,1} relationship.

• Foreign keys made without renaming the foreign key attributes are in black whereas foreign keys that rename
the attributes are indicated in red.

5.10.2 Diagramming an entire schema

The schema object for a package can be obtained using its getSchema function. (See Creating Schemas.)

draw(dj.ERD(seq.getSchema)) % draw the ERD

DataJoint provides shortcuts to plot ERD of a table neighborhood or a schema using the erd command:

% plot the ERD of the stimulus schema
erd stimulus

% plot the neighborhood of the stimulus.Trial table
erd stimulus.Trial

% plot the stimulus and experiment schemas and the neighborhood of preprocess.Sync
erd stimulus experiment preprocess.Sync

Initializing with a single table

A dj.ERD object can be initialized with a single table.

draw(dj.ERD(seq.Genome))

A single node makes a rather boring graph but ERDs can be added together or subtracted from each other using graph
algebra.

Adding ERDs together

However two graphs can be added, resulting in new graph containing the union of the sets of nodes from the two
original graphs. The corresponding foreign keys will be automatically

% plot the ERD with tables Genome and Species from package +seq.
draw(dj.ERD(seq.Genome) + dj.ERD(seq.Species))
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Expanding ERDs upstream and downstream

Adding a number to an ERD object adds nodes downstream in the pipeline while subtracting a number from ERD
object adds nodes upstream in the pipeline.

Examples:

% Plot all the tables directly downstream from ``seq.Genome``:
draw(dj.ERD(seq.Genome)+1)

% Plot all the tables directly upstream from ``seq.Genome``:
draw(dj.ERD(seq.Genome)-1)

% Plot the local neighborhood of ``seq.Genome``
draw(dj.ERD(seq.Genome)+1-1+1-1)

5.11 Manual Tables

Manual tables are populated during experiments through a variety of interfaces. Not all manual information is entered
by typing. Automated software can enter it directly into the database. What makes a manual table manual is that it
does not perform any computations within the DataJoint pipeline.

The following code defines three manual tables Animal , Session , and Scan :

File +experiment/Animal.m

%{
# information about animal
animal_id : int # animal id assigned by the lab
---
-> experiment.Species
date_of_birth=null : date # YYYY-MM-DD optional
sex='' : enum('M', 'F', '') # leave empty if unspecified

%}
classdef Animal < dj.Manual
end

File +experiment/Session.m

%{
# Experiment Session
-> experiment.Animal
session : smallint # session number for the animal
---
session_date : date # YYYY-MM-DD
-> experiment.User
-> experiment.Anesthesia
-> experiment.Rig

%}
classdef Session < dj.Manual
end

File +experiment/Scan.m
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%{
# Two-photon imaging scan
-> experiment.Session
scan : smallint # scan number within the session
---
-> experiment.Lens
laser_wavelength : decimal(5,1) # um
laser_power : decimal(4,1) # mW

%}
classdef Scan < dj.Manual
end

5.12 Lookup Tables

Lookup tables contain basic facts that are not specific to an experiment and are fairly persistent. Their contents are
typically small. In GUIs, lookup tables are often used for drop-down menus or radio buttons. In computed tables, they
are often used to specify alternative methods for computations. Lookup tables are commonly populated from their
contents property. In an ERD they are shown in gray. The decision of which tables are lookup tables and which

are manual can be somewhat arbitrary.

The table below is declared as a lookup table with its contents property provided to generate entities.

File +lab/User.m

%{
# users in the lab
username : varchar(20) # user in the lab
---
first_name : varchar(20) # user first name
last_name : varchar(20) # user last name

%}
classdef User < dj.Lookup

properties
contents = {

'cajal' 'Santiago' 'Cajal'
'hubel' 'David' 'Hubel'
'wiesel' 'Torsten' 'Wiesel'

}
end

end

5.13 Drop

The drop method completely removes a table from the database, including its definition. It also removes all depen-
dent tables, recursively. DataJoint will first display the tables being dropped and the number of entities in each before
prompting the user for confirmation to proceed.

The drop method is often used during initial design to allow altered table definitions to take effect.

% drop the Person table from the lab schema
drop(lab.Person)
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5.13.1 Dropping part tables

A part table is usually removed as a consequence of calling drop on its master table.

Note: This rule is currently not enforced in MATLAB, but calling drop directly on a part table will produce an

error in the future. See issue #125 on datajoint-matlab for more information.
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SIX

WORK WITH EXISTING PIPELINES

6.1 Loading Classes

6.1.1 Creating a virtual class

To facilitate working with existing pipelines, DataJoint MATLAB creates a TableAccessor property in each schema
object. The TableAccessor property, a virtual class generator, is available as schema.v , and allows listing and
querying of the tables defined on the server without needing to create the MATLAB table definitions locally. For
example, creating a scratch experiment schema package and querying an existing my_experiment.Session
table on the server can be done as follows:

dj.createSchema('experiment', '/scratch', 'my_experiment')
addpath('/scratch')
experiment_schema = experiment.getSchema();
experiment_schema.v.Session() & 'session_id=1234';

Note: You can view the available tables in a schema by using tab completion on the schema.v property.
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SEVEN

DATA MANIPULATION

7.1 Manipulation

Data manipulation operations change the state of the data stored in the database without modifying the structure of
the stored data. These operations include insert, delete, and update.

Data manipulation operations in DataJoint respect the integrity constraints.

7.2 Insert

The insert method of DataJoint table objects inserts entities into the table.

The insert method inserts any number of entities in the form of a structure array with field names corresponding to
the attribute names.

For example

s.username = 'alice';
s.first_name = 'Alice';
s.last_name = 'Cooper';
insert(lab.Person, s)

Quick entry of multiple entities takes advantage of MATLAB’s cell array notation:

insert(lab.Person, {
'alice' 'Alice' 'Cooper'
'bob' 'Bob' 'Dylan'
'carol' 'Carol' 'Douglas'

})

In this case, the values must match the order of the attributes in the table.

The optional parameter command can be either 'IGNORE' or 'REPLACE' . Duplicates, unmatched attributes, or
missing required attributes will cause insert errors, unless command is specified.
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7.2.1 Batched inserts

Inserting a set of entities in a single insert differs from inserting the same set of entities one-by-one in a for loop
in two ways:

1. Network overhead is reduced. Network overhead can be tens of milliseconds per query. Inserting 1000 entities
in a single insert call may save a few seconds over inserting them individually.

2. The insert is performed as an all-or-nothing transaction. If even one insert fails because it violates any constraint,
then none of the entities in the set are inserted.

However, inserting too many entities in a single query may run against buffer size or packet size limits of the database
server. Due to these limitations, performing inserts of very large numbers of entities should be broken up into moder-
ately sized batches, such as a few hundred at a time.

7.2.2 Server-side inserts

Data inserted into a table often come from other tables already present on the database server. In such cases, data can
be fetched from the first table and then inserted into another table, but this results in transfers back and forth between
the database and the local system. Instead, data can be inserted from one table into another without transfers between
the database and the local system using queries.

In the example below, a new schema has been created in preparation for phase two of a project. Experimental
protocols from the first phase of the project will be reused in the second phase. Since the entities are already
present on the database in the Protocol table of the phase_one schema, we can perform a server-side insert

into phase_two.Protocol without fetching a local copy.

% Server-side inserts are faster...
phase_two.Protocol.insert(phase_one.Protocol)

% ...than fetching before inserting
protocols = phase_one.Protocol.fetch();
phase_two.Protocol.insert(protocols)

7.3 Delete

The del method deletes entities from a table and all dependent entries in dependent tables.

Delete is often used in conjunction with the restriction operator to define the subset of entities to delete. Delete is
performed as an atomic transaction so that partial deletes never occur.

7.3.1 Examples

Delete the entire contents of the table tuning.VonMises and all its dependents:

% delete all entries from tuning.VonMises
del(tuning.VonMises)

% delete entries from tuning.VonMises for mouse 1010
del(tuning.VonMises & 'mouse=1010')

% delete entries from tuning.VonMises except mouse 1010
del(tuning.VonMises - 'mouse=1010')
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7.3.2 Deleting from part tables

Entities in a part table are usually removed as a consequence of deleting the master table.

Note: This rule is currently not enforced in MATLAB, but calling del directly on a part table will produce an error
in the future. See issue #193 on datajoint-matlab for more information.

7.4 Cautious Update

In database programming, the update operation refers to modifying the values of individual attributes in an entity
within a table without replacing the entire entity. Such an in-place update mechanism is not part of DataJoint’s data
manipulation model, because it circumvents data dependency constraints.

This is not to say that data cannot be changed once they are part of a pipeline. In DataJoint, data are changed by
replacing entire entities rather than by updating the values of their attributes. The process of deleting existing entities
and inserting new entities with corrected values ensures the integrity of the data throughout the pipeline.

This approach applies specifically to automated tables (see Auto-populate). However, manual tables are often edited
outside DataJoint through other interfaces. It is up to the user’s discretion to allow updates in manual tables, and the
user must be cognizant of the fact that updates will not trigger re-computation of dependent data.

7.5 Transactions

In some cases, a sequence of several operations must be performed as a single operation: interrupting the sequence of
such operations halfway would leave the data in an invalid state. While the sequence is in progress, other processes
accessing the database will not see the partial results until the transaction is complete. The sequence make include
data queries and manipulations.

In such cases, the sequence of operations may be enclosed in a transaction.

Transactions are formed using the methods startTransaction , cancelTransaction , and
commitTransaction of a connection object. A connection object may obtained from any table object.

For example, the following code inserts matching entries for the master table Session and its part table
SessionExperimenter .

% get the connection object
session = Session
connection = session.conn

% insert Session and Session.Experimenter entries in a transaction
connection.startTransaction
try

key.subject_id = animal_id;
key.session_time = session_time;

session_entry = key;
session_entry.brain_region = region;
insert(Session, session_entry)

experimenter_entry = key;
experimenter_entry.experimenter = username;

(continues on next page)
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(continued from previous page)

insert(SessionExperimenter, experiment_entry)
connection.commitTransaction

catch
connection.cancelTransaction

end

Here, to external observers, both inserts will take effect together only upon exiting from the try-catch block or will
not have any effect at all. For example, if the second insert fails due to an error, the first insert will be rolled back.
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8.1 Query Objects

Data queries retrieve data from the database. A data query is performed with the help of a query object, which is
a symbolic representation of the query that does not in itself contain any actual data. The simplest query object is an
instance of a table class, representing the contents of an entire table.

For example, if experiment.Session is a DataJoint table class, you can create a query object to retrieve its entire
contents as follows:

query = experiment.Session;

More generally, a query object may be formed as a query expression constructed by applying operators to other query
objects.

For example, the following query retrieves information about all experiments and scans for mouse 102 (excluding
experiments with no scans):

query = experiment.Session * experiment.Scan & 'animal_id = 102';

You can preview the contents of the query in Python, Jupyter Notebook, or MATLAB by simply displaying the object.
In the image below, the object query is first defined as a restriction of the table EEG by values of the attribute
eeg_sample_rate greater than 1000 Hz. Displaying the object gives a preview of the entities that will be returned

by query . Note that this preview only lists a few of the entities that will be returned. Also, the preview does not

contain any data for attributes of datatype blob .

Fig. 1: Defining a query object and previewing the entities returned by the query.
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Once the desired query object is formed, the query can be executed using its fetch methods. To fetch means to transfer
the data represented by the query object from the database server into the workspace of the host language.

s = query.fetch()

Here fetching from the query object produces the struct array s of the queried data.

8.1.1 Checking for returned entities

The preview of the query object shown above displayed only a few of the entities returned by the query but also
displayed the total number of entities that would be returned. It can be useful to know the number of entities returned
by a query, or even whether a query will return any entities at all, without having to fetch all the data themselves.

The exists method applied to a query object evaluates to true if the query returns any entities and to false if
the query result is empty.

The count method applied to a query object determines the number of entities returned by the query.

% number of ephys sessions since the start of 2018.
n = count(ephys.Session & 'session_date >= "2018-01-01"')

8.1.2 Normalization in queries

Query objects adhere to entity entity normalization just like the stored tables do. The result of a query is a well-
defined entity set with an readily identifiable entity class and designated primary attributes that jointly distinguish any
two entities from each other. The query operators are designed to keep the result normalized even in complex query
expressions.

8.2 Example Schema

The example schema below contains data for a university enrollment system. Information about students, departments,
courses, etc. are organized in multiple tables.

Warning: Empty primary keys, such as in the CurrentTerm table, are not yet supported by DataJoint. This
feature will become available in a future release. See Issue #127 for more information.

File +university/Student.m

%{
student_id : int unsigned # university ID
---
first_name : varchar(40)
last_name : varchar(40)
sex : enum('F', 'M', 'U')
date_of_birth : date
home_address : varchar(200) # street address
home_city : varchar(30)
home_state : char(2) # two-letter abbreviation
home_zipcode : char(10)
home_phone : varchar(14)

%}

(continues on next page)
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(continued from previous page)

classdef Student < dj.Manual
end

File +university/Department.m

%{
dept : char(6) # abbreviated department name, e.g. BIOL
---
dept_name : varchar(200) # full department name
dept_address : varchar(200) # mailing address
dept_phone : varchar(14)

%}
classdef Department < dj.Manual
end

File +university/StudentMajor.m

%{
-> university.Student
---
-> university.Department
declare_date : date # when student declared her major

%}
classdef StudentMajor < dj.Manual
end

File +university/Course.m

%{
-> university.Department
course : int unsigned # course number, e.g. 1010
---
course_name : varchar(200) # e.g. "Cell Biology"
credits : decimal(3,1) # number of credits earned by completing the course

%}
classdef Course < dj.Manual
end

File +university/Term.m

%{
term_year : year
term : enum('Spring', 'Summer', 'Fall')

%}
classdef Term < dj.Manual
end

File +university/Section.m

%{
-> university.Course
-> university.Term
section : char(1)
---
room : varchar(12) # building and room code

%}

(continues on next page)
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(continued from previous page)

classdef Section < dj.Manual
end

File +university/CurrentTerm.m

%{
---
-> university.Term

%}
classdef CurrentTerm < dj.Manual
end

File +university/Enroll.m

%{
-> university.Section
-> university.Student

%}
classdef Enroll < dj.Manual
end

File +university/LetterGrade.m

%{
grade : char(2)
---
points : decimal(3,2)

%}
classdef LetterGrade < dj.Manual
end

File +university/Grade.m

%{
-> university.Enroll
---
-> university.LetterGrade

%}
classdef Grade < dj.Manual
end
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8.2.1 Example schema ERD

Fig. 2: Example schema for a university database. Tables contain data on students, departments, courses, etc.

8.3 Fetch

Data queries in DataJoint comprise two distinct steps:

1. Construct the query object to represent the required data using tables and operators.

2. Fetch the data from query into the workspace of the host language – described in this section.

Note that entities returned by fetch methods are not guaranteed to be sorted in any particular order unless specifically
requested. Furthermore, the order is not guaranteed to be the same in any two queries, and the contents of two identical
queries may change between two sequential invocations unless they are wrapped in a transaction. Therefore, if you
wish to fetch matching pairs of attributes, do so in one fetch call.

The examples below are based on the example schema for this part of the documentation.

DataJoint for MATLAB provides three distinct fetch methods: fetch , fetch1 , and fetchn . The three methods
differ by the type and number of their returned variables.

query.fetch returns the result in the form of an n
�

1 struct array where n is the number of records matching the
query expression.

query.fetch1 and query.fetchn split the result into separate output arguments, one for each attribute of the
query.

The types of the variables returned by fetch1 and fetchn depend on the datatypes of the attributes.
query.fetchn will enclose any attributes of char and blob types in cell arrays whereas query.fetch1 will unpack

them.

MATLAB has two alternative forms of invoking a method on an object: using the dot notation or passing the object as
the first argument. The following two notations produce an equivalent result:
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result = query.fetch(query, 'attr1')
result = fetch(query, 'attr1')

However, the dot syntax only works when the query object is already assigned to a variable. The second syntax is
more commonly used to avoid extra variables.

For example, the two methods below are equivalent although the second method creates an extra variable.

# Method 1
result = fetch(university.Student, '*');

# Method 2
query = university.Student;
result = query.fetch()

8.3.1 Fetch the primary key

Without any arguments, the fetch method retrieves the primary key values of the table in the form of a single column
struct . The attribute names become the fieldnames of the struct .

keys = query.fetch;
keys = fetch(university.Student & university.StudentMajor);

Note that MATLAB allows calling functions without the parentheses () .

8.3.2 Fetch entire query

With a single-quoted asterisk ( '*' ) as the input argument, the fetch command retrieves the entire result as a struct
array.

data = query.fetch('*');

data = fetch(university.Student & university.StudentMajor, '*');

In some cases, the amount of data returned by fetch can be quite large. When query is a table object rather than

a query expression, query.sizeOnDisk() reports the estimated size of the entire table. It can be used to assess

whether running query.fetch('*') would be wise. Please note that it is only currently possible to query the size
of entire tables stored directly in the database .

8.3.3 As separate variables

The fetch1 and fetchn methods are used to retrieve each attribute into a separate variable. DataJoint needs two
different methods to tell MATLAB whether the result should be in array or scalar form; for numerical fields it does
not matter (because scalars are still matrices in MATLAB) but non-uniform collections of values must be enclosed in
cell arrays.

query.fetch1 is used when query contains exactly one entity, otherwise fetch1 will raise an error.

query.fetchn returns an arbitrary number of elements with character arrays and blobs returned in the form of cell
arrays, even when query happens to contain a single entity.
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% when tab has exactly one entity:
[name, img] = query.fetch1('name', 'image');

% when tab has any number of entities:
[names, imgs] = query.fetchn('name', 'image');

8.3.4 Obtaining the primary key along with individual values

It is often convenient to know the primary key values corresponding to attribute values retrieved by fetchn . This
can be done by adding a special input argument indicating the request and another output argument to receive the key
values:

% retrieve names, images, and corresponding primary key values:
[names, imgs, keys] = query.fetchn('name', 'image', 'KEY');

The resulting value of keys will be a column array of type struct . This mechanism is only implemented for

fetchn .

8.3.5 Rename and calculate

In DataJoint for MATLAB, all fetch methods have all the same capability as the proj operator. For example,
renaming an attribute can be accomplished using the syntax below.

[names, BMIs] = query.fetchn('name', 'weight/height/height -> bmi');

See Proj for an in-depth description of projection.

8.3.6 Sorting and limiting the results

To sort the result, add the additional ORDER BY argument in fetch and fetchn methods as the last argument.

% retrieve field ``course_name`` from courses
% in the biology department, sorted by course number
notes = fetchn(university.Course & 'dept="BIOL"', 'course_name', ...

'ORDER BY course');

The ORDER BY argument is passed directly to SQL and follows the same syntax as the ORDER BY clause

Similarly, the LIMIT and OFFSET clauses can be used to limit the result to a subset of entities. For example, to return
the most advanced courses, one could do the following:

s = fetch(university.Course, '*', 'ORDER BY course DESC LIMIT 5')

The limit clause is passed directly to SQL and follows the same rules
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8.4 Iteration

The DataJoint model primarily handles data as sets, in the form of tables. However, it can sometimes be useful to access
or to perform actions such as visualization upon individual entities sequentially. In DataJoint this is accomplished
through iteration.

In the simple example below, iteration is used to display the names and values of the primary key attributes of each
entity in the simple table or table expression tab .

for key = tab.fetch()'
disp(key)

end

Note that the results returned by fetch must be transposed. MATLAB iterates across columns, so the single column
struct returned by fetch must be transposed into a single row.

8.5 Operators

Data queries have the form of expressions using operators to derive the desired table. The expressions themselves do
not contain any data. They represent the desired data symbolically.

Once a query is formed, the fetch methods are used to bring the data into the local workspace. Since the expressions
are only symbolic representations, repeated fetch calls may yield different results as the state of the database is
modified.

DataJoint implements a complete algebra of operators on tables:

operator notation meaning
restric-
tion

A & cond The subset of entities from table A that meet condition cond

restric-
tion

A - cond The subset of entities from table A that do not meet condition cond

join A * B Combines all matching information from A and B
proj A.proj(...) Selects and renames attributes from A or computes new attributes
aggr A.aggr(B, ...) Same as projection but allows computations based on matching information in

B

union A + B All unique entities from both A and B

8.5.1 Principles of relational algebra

DataJoint’s algebra improves upon the classical relational algebra and upon other query languages to simplify and
enhance the construction and interpretation of precise and efficient data queries.

1. Entity integrity: Data are represented and manipulated in the form of tables representing well-formed entity
sets. This applies to the inputs and outputs of query operators. The output of a query operator is an entity set
with a well-defined entity type, a primary key, unique attribute names, etc.

2. Algebraic closure: All operators operate on entity sets and yield entity sets. Thus query expressions may be
used as operands in other expressions or may be assigned to variables to be used in other expressions.

3. Attributes are identified by names: All attributes have explicit names. This includes results of queries. Opera-
tors use attribute names to determine how to perform the operation. The order of the attributes is not significant.
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8.5.2 Matching entities

Binary operators in DataJoint are based on the concept of matching entities; this phrase will be used throughout the
documentation.

Two entities match when they have no common attributes or when their common attributes contain the
same values.

Here common attributes are those that have the same names in both entities. It is usually assumed that the common
attributes are of compatible datatypes to allow equality comparisons.

Another way to phrase the same definition is

Two entities match when they have no common attributes whose values differ.

It may be conceptually convenient to imagine that all tables always have an additional invisible attribute, omega
whose domain comprises only one value, 1. Then the definition of matching entities is simplified:

Two entities match when their common attributes contain the same values.

Matching entities can be merged into a single entity without any conflicts of attribute names and values.

Examples

This is a matching pair of entities:

and so is this one:

but these entities do not match:

8.5.3 Join compatibility

All binary operators with other tables as their two operands require that the operands be join-compatible, which
means that:

1. All common attributes in both operands (attributes with the same name) must be part of either the primary key
or a foreign key.

2. All common attributes in the two relations must be of a compatible datatype for equality comparisons.
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These restrictions are introduced both for performance reasons and for conceptual reasons. For performance, they
encourage queries that rely on indexes. For conceptual reasons, they encourage database design in which entities in
different tables are related to each other by the use of primary keys and foreign keys.

8.6 Restriction

8.6.1 Restriction operators & and -

The restriction operator A & cond selects the subset of entities from A that meet the condition cond . The exclu-
sion operator A - cond selects the complement of restriction, i.e. the subset of entities from A that do not meet the
condition cond .

Fig. 3: Restriction and exclusion.

The condition cond may be one of the following:

• another table

• a mapping, or struct

• an expression in a character string

• a collection of conditions as a struct or cell array

• a Boolean expression ( true or false )

• a query expression

As the restriction and exclusion operators are complementary, queries can be constructed using both operators that
will return the same results. For example, the queries A & cond and A - Not(cond) will return the same entities.
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8.6.2 Restriction by a table

When restricting table A with another table, written A & B , the two tables must be join-compatible (see Join
compatibility). The result will contain all entities from A for which there exist a matching entity in B . Exclusion of
table A with table B , or A - B , will contain all entities from A for which there are no matching entities in B .

Fig. 4: Restriction by another table.

Fig. 5: Exclusion by another table.

Restriction by a table with no common attributes

Restriction of table A with another table B having none of the same attributes as A will simply return all entities in
A , unless B is empty as described below. Exclusion of table A with B having no common attributes will return no

entities, unless B is empty as described below.
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Fig. 6: Restriction by a table having no common attributes.

Fig. 7: Exclusion by a table having no common attributes.

Restriction by an empty table

Restriction of table A with an empty table will return no entities regardless of whether there are any matching at-
tributes. Exclusion of table A with an empty table will return all entities in A .

Fig. 8: Restriction by an empty table.
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Fig. 9: Exclusion by an empty table.

8.6.3 Restriction by a mapping

A key-value mapping may be used as an operand in restriction. For each key that is an attribute in A , the paired value
is treated as part of an equality condition. Any key-value pairs without corresponding attributes in A are ignored.

Restriction by an empty mapping or by a mapping with no keys matching the attributes in A will return all the entities
in A . Exclusion by an empty mapping or by a mapping with no matches will return no entities.

For example, let’s say that table Session has the attribute session_date of datatype datetime . You are
interested in sessions from January 1st, 2018, so you write the following restriction query using a mapping.

ephys.Session & struct('session_dat', '2018-01-01')

Our mapping contains a typo omitting the final e from session_date , so no keys in our mapping will match any
attribute in Session . As such, our query will return all of the entities of Session .

8.6.4 Restriction by a string

Restriction can be performed when cond is an explicit condition on attribute values, expressed as a string. Such
conditions may include arithmetic operations, functions, range tests, etc. Restriction of table A by a string containing
an attribute not found in table A produces an error.

% All the sessions performed by Alice
ephys.Session & 'user = "Alice"'

% All the experiments at least one minute long
ephys.Experiment & 'duration >= 60'

8.6.5 Restriction by a collection

Warning: This section documents future intended behavior in MATLAB, which is contrary to current behavior.
DataJoint for MATLAB has an open issue tracking this change.

A collection can be a cell array or structure array. Cell arrays can contain collections of arbitrary restriction conditions.
Structure arrays are limited to collections of mappings, each having the same attributes.

% a cell aray:
cond_cell = {'first_name = "Aaron"', 'last_name = "Aaronson"'}

% a structure array:

(continues on next page)
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(continued from previous page)

cond_struct = struct('first_name', 'Aaron', 'last_name', 'Paul')
cond_struct(2) = struct('first_name', 'Rosie', 'last_name', 'Aaronson')

When cond is a collection of conditions, the conditions are applied by logical disjunction (logical OR). Thus, re-
striction of table A by a collection will return all entities in A that meet any of the conditions in the collection. For
example, if you restrict the Student table by a collection containing two conditions, one for a first and one for a last
name, your query will return any students with a matching first name or a matching last name.

university.Student() & {'first_name = "Aaron"', 'last_name = "Aaronson"'}

Fig. 10: Restriction by a collection, returning any entities matching any condition in the collection.

Restriction by an empty collection returns no entities. Exclusion of table A by an empty collection returns all the
entities of A .

8.6.6 Restriction by a Boolean expression

A & true and A - false are equivalent to A .

A & false and A - true are empty.

8.6.7 Restriction by a query

Restriction by a query object is a generalization of restriction by a table (which is also a query object), because
DataJoint queries always produce well-defined entity sets, as described in entity normalization. As such, restriction
by queries follows the same behavior as restriction by tables described above.

The example below creates a query object corresponding to all the sessions performed by the user Alice. The
Experiment table is then restricted by the query object, returning all the experiments that are part of sessions

performed by Alice.

query = ephys.Session & 'user = "Alice"'
ephys.Experiment & query

8.7 Join

8.7.1 Join operator *

The Join operator A * B combines the matching information in A and B . The result contains all matching combi-
nations of entities from both arguments.
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Principles of joins

1. The operands A and B must be join-compatible.

2. The primary key of the result is the union of the primary keys of the operands.

Examples of joins

Example 1 : When the operands have no common attributes, the result is the cross product – all combinations of
entities.

Example 2 : When the operands have common attributes, only entities with matching values are kept.

Example 3 : Joining on secondary attribute.
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Properties of join

1. When A and B have the same attributes, the join A * B becomes equivalent to the set intersection A ∩ B .
Hence, DataJoint does not need a separate intersection operator.

2. Commutativity: A * B is equivalent to B * A .

3. Associativity: (A * B) * C is equivalent to A * (B * C) .

8.8 Proj

The proj operator represents projection and is used to select attributes (columns) from a table, to rename them, or
to create new calculated attributes.

8.8.1 Simple projection

The simple projection selects a subset of attributes of the original table. However, the primary key attributes are always
included.

Using the example schema, let table department have attributes dept, dept_name, dept_address, and dept_phone.
The primary key attribute is in bold.

Then department.proj() will have attribute dept.

department.proj('dept') will have attribute dept.

department.proj('dept_name', 'dept_phone') will have attributes dept, dept_name, and dept_phone.

8.8.2 Renaming

In addition to selecting attributes, proj can rename them. Any attribute can be renamed, including primary key
attributes.

Renaming is done using a string: tab('old_attr->new_attr') .

For example, let table tab have attributes mouse, session, session_date, stimulus, and behavior. The primary key
attributes are in bold.

Then

tab.proj('mouse->animal', 'stimulus')

will have attributes animal, session, and stimulus.

Renaming is often used to control the outcome of a join. For example, let tab have attributes slice, and cell. Then
tab * tab will simply yield tab . However,

tab * tab.proj('cell->other')

yields all ordered pairs of all cells in each slice.
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8.8.3 Calculations

In addition to selecting or renaming attributes, proj can compute new attributes from existing ones.

For example, let tab have attributes mouse , scan , surface_z , and scan_z . To obtain the new attribute
depth computed as scan_z - surface_z and then to restrict to depth > 500 :

tab.proj('scan_z-surface_z -> depth') & 'depth > 500'

Calculations are passed to SQL and are not parsed by DataJoint. For available functions, you may refer to the MySQL
documentation.

8.9 Aggr

Aggregation, performed with the aggr operator, is a special form of proj with the additional feature of allowing

aggregation calculations on another table. It has the form tab.aggr(other, ...) where other is another ta-

ble. Without the argument other , aggr and proj are exactly equivalent. Aggregation allows adding calculated

attributes to each entity in tab based on aggregation functions over attributes in the matching entities of other .

Aggregation functions include count , sum , min , max , avg , median , percentile , stdev , var , and
others. Aggregation functions can only be used in the definitions of new attributes within the aggr operator.

As with proj , the output of aggr has the same entity class, the same primary key, and the same number of elements

as tab . Primary key attributes are always included in the output and may be renamed, just like in proj .

8.9.1 Examples

% Number of students in each course section
university.Section.aggr(university.Enroll, 'count(*)->n')
% Average grade in each course
university.Course.aggr(university.Grade * university.LetterGrade, 'avg(points)->avg_grade')

8.10 Union

The union operator is not yet implemented – this page serves as the specification for the upcoming implementation.
Union is rarely needed in practice.

8.10.1 Union operator +

The result of the union operator A + B contains all the entities from both operands. Entity normalization requires that
the operands in a union both belong to the same entity type with the same primary key using homologous attributes.
In the absence of any secondary attributes, the result of a union is the simple set union.

When secondary attributes are present, they must have the same names and datatypes in both operands. The two
operands must also be disjoint, without any duplicate primary key values across both inputs. These requirements
prevent ambiguity of attribute values and preserve entity identity.
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Principles of union

1. As in all operators, the order of the attributes in the operands is not significant.

2. Operands A and B must have the same primary key attributes. Otherwise, an error will be raised.

3. Operands A and B may not have any common non-key attributes. Otherwise, an error will be raised.

4. The result A + B will have the same primary key as A and B .

5. The result A + B will have all the non-key attributes from both A and B .

6. For entities that are found in both A and B (based on the primary key), the secondary attributes will be filled
from the corresponding entities in A and B .

7. For entities that are only found in either A or B , the other operand’s secondary attributes will filled with null
values.

Examples of union

Example 1 : Note that the order of the attributes does not matter.

Example 2 : Non-key attributes are combined from both tables and filled with NULLs when missing.
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Properties of union

1. Commutative: A + B is equivalent to B + A .

2. Associative: (A + B) + C is equivalent to A + (B + C) .

8.11 Universal Sets

All query operators are designed to preserve the entity types of their inputs. However, some queries require creating
a new entity type that is not represented by any stored tables. This means that a new entity type must be explicitly
defined as part of the query. Universal sets fulfill this role.

Universal sets are used in DataJoint to define virtual tables with arbitrary primary key structures for use in query
expressions. A universal set, defined using class dj.U , denotes the set of all possible entities with given attributes of
any possible datatype. Universal sets allow query expressions using virtual tables when no suitable base table exists.
Attributes of universal sets are allowed to be matched to any namesake attributes, even those that do not come from
the same initial source.

For example, you may like to query the university database for the complete list of students’ home cities, along with the
number of students from each city. The schema for the university database does not have a table for cities and states.
A virtual table can fill the role of the nonexistent base table, allowing queries that would not be possible otherwise.

Note: dj.U is not yet implemented in MATLAB. The feature will be added in an upcoming release: https://github.
com/datajoint/datajoint-matlab/issues/144

% All home cities of students
dj.U('home_city', 'home_state') & university.Student

% Total number of students from each city
aggr(dj.U('home_city', 'home_state'), university.Student, 'count(*)->n')

% Total number of students from each state
aggr(U('home_state'), university.Student, 'count(*)->n')

% Total number of students in the database
aggr(U(), university.Student, 'count(*)->n')

The result of aggregation on a universal set is restricted to the entities with matches in the aggregated table, such as
Student in the example above. In other words, X.aggr(A, ...) is interpreted as (X & A).aggr(A, ...) for

universal set X . All attributes of a universal set are considered primary.

Universal sets should be used sparingly when no suitable base tables already exist. In some cases, defining a new base
table can make queries clearer and more semantically constrained.
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NINE

COMPUTATION

9.1 Auto-populate

Auto-populated tables are used to define, execute, and coordinate computations in a DataJoint pipeline.

Tables in the initial portions of the pipeline are populated from outside the pipeline. In subsequent steps, computations
are performed automatically by the DataJoint pipeline in auto-populated tables.

Computed tables belong to one of the two auto-populated data tiers: dj.Imported and dj.Computed . DataJoint
does not enforce the distinction between imported and computed tables: the difference is purely semantic, a convention
for developers to follow. If populating a table requires access to external files such as raw storage that is not part of
the database, the table is designated as imported. Otherwise it is computed.

Auto-populated tables are defined and queried exactly as other tables. (See Manual Tables.) Their data definition
follows the same definition syntax.

9.1.1 Make

For auto-populated tables, data should never be entered using insert directly. Instead these tables must define the
callback method make(self, key) . The insert method then can only be called on self inside this callback
method.

Imagine that there is a table test.Image that contains 2D grayscale images in its image attribute. Let us de-
fine the computed table, test.FilteredImage that filters the image in some way and saves the result in its

filtered_image attribute.

The class will be defined as follows.

%{
# Filtered image
-> test.Image
---
filtered_image : longblob
%}

classdef FilteredImage < dj.Computed
methods(Access=protected)

function make(self, key)
img = fetch1(test.Image & key, 'image');
key.filtered_image = myfilter(img);
self.insert(key)

end
(continues on next page)
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(continued from previous page)

end
end

Note: Currently matlab uses makeTuples rather than make . This will be fixed in an upcoming release: https:
//github.com/datajoint/datajoint-matlab/issues/141

The make method receives one argument: the struct key containing the primary key value of an element of key
source to be worked on.

The make method received one argument: the key of type struct in MATLAB and dict in Python. The key
represents the partially filled entity, usually already containing the primary key attributes of the key source.

The make callback does three things:

1. Fetches data from tables upstream in the pipeline using the key for restriction.

2. Computes and adds any missing attributes to the fields already in key .

3. Inserts the entire entity into self .

make may populate multiple entities in one call when key does not specify the entire primary key of the populated
table.

9.1.2 Populate

The inherited populate method of dj.Imported and dj.Computed automatically calls make for every key for
which the auto-populated table is missing data.

The FilteredImage table can be populated as

populate(test.FilteredImage)

Note that it is not necessary to specify which data needs to be computed. DataJoint will call make , one-by-one, for
every key in Image for which FilteredImage has not yet been computed.

Chains of auto-populated tables form computational pipelines in DataJoint.

9.1.3 Populate options

Behavior of the populate method depends on the number of output arguments requested in the function call.

When no output arguments are requested, errors will halt population. With two output arguments ( failedKeys
and errors ), populate will catch any encountered errors and return them along with the offending keys.
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9.1.4 Progress

The function parpopulate works identically to populate except that it uses a job reservation mechanism to allow
multiple processes to populate the same table in parallel without collision. When running parpopulate for the first

time, DataJoint will create a job reservation table and its class <package>.Jobs with the following declaration:

{%
# the job reservation table
table_name : varchar(255) # className of the table
key_hash : char(32) # key hash
---
status : enum('reserved','error','ignore')# if tuple is missing, the job is available
key=null : blob # structure containing the key
error_message="" : varchar(1023) # error message returned if failed
error_stack=null : blob # error stack if failed
host="" : varchar(255) # system hostname
pid=0 : int unsigned # system process id
timestamp=CURRENT_TIMESTAMP : timestamp # automatic timestamp

%}

A job is considered to be available when <package>.Jobs contains no matching entry.

For each make call, parpopulate sets the job status to reserved . When the job is completed, the record is
removed. If the job results in error, the job record is left in place with the status set to error and the error message
and error stacks saved. Consequently, jobs that ended in error during the last execution will not be attempted again
until you delete the corresponding entities from <package>.Jobs .

The primary key of the jobs table comprises the name of the class and a 32-character hash of the job’s primary key.
However, the key is saved in a separate field for error debugging purposes.

9.2 Key Source

9.2.1 Default key source

Key source refers to the set of primary key values over which autopopulate iterates, calling the make method at each
iteration. Each key from the key source is passed to the table’s make call. By default, the key source for a table is
the join of its primary dependencies.

For example, consider a schema with three tables. The Stimulus table contains one attribute stimulus_type
with one of two values, “Visual” or “Auditory”. The Modality table contains one attribute modality with one of
three values, “EEG”, “fMRI”, and “PET”. The Protocol table has primary dependencies on both the Stimulus
and Modality tables.

The key source for Protocol will then be all six combinations of stimulus_type and modality as shown in
the figure below.
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9.2.2 Custom key source

A custom key source can be configured by setting the keySource property within a table’s classdef block, using
MATLAB’s dependent properties syntax.

Any query object can be used as the key source. In most cases the new key source will be some alteration of the
default key source. Custom key sources often involve restriction to limit the key source to only relevant entities. Other
designs may involve using only one of a table’s primary dependencies.

In the example below, the EEG table depends on the Recording table that lists all recording sessions. However, the

populate method of EEG should only ingest recordings where the recording_type is EEG . Setting a custom
key source prevents the populate call from iterating over recordings of the wrong type.

A custom key source can be configured by setting the keySource property within a table’s classdef block, using
MATLAB’s dependent properties syntax.

9.3 Master-Part Relationship

Often an entity in one table is inseparably associated with a group of entities in another, forming a master-part
relationship. The master-part relationship ensures that all parts of a complex representation appear together or not at
all. This has become one of the most powerful data integrity principles in DataJoint.

As an example, imagine segmenting an image to identify regions of interest. The resulting segmentation is in-
separable from the ROIs that it produces. In this case, the two tables might be called Segmentation and
Segmentation.ROI .

In MATLAB, the master and part tables are declared in a separate classdef file. The name of the part table must
begin with the name of the master table. The part table must declare the property master containing an object of the
master.

+test/Segmentation.m

%{
# image segmentation
-> test.Image
%}
classdef Segmentation < dj.Computed

methods(Access=protected)
function make(self, key)

self.insert(key)
make(test.SegmentationRoi, key)

end
end

end

+test/SegmentationROI.m

%{
# Region of interest resulting from segmentation
-> test.Segmentation
roi : smallint # roi number
---
roi_pixels : longblob # indices of pixels
roi_weights : longblob # weights of pixels
%}

(continues on next page)
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(continued from previous page)

classdef SegmentationROI < dj.Part
properties(SetAccess=protected)

master = test.Segmentation
end
methods

function make(self, key)
image = fetch1(test.Image & key, 'image');
[roi_pixels, roi_weighs] = mylib.segment(image);
for roi=1:length(roi_pixels)

entity = key;
entity.roi_pixels = roi_pixels{roi};
entity.roi_weights = roi_weights{roi};
self.insert(entity)

end
end

end
end

9.3.1 Populating

Master-part relationships can form in any data tier, but DataJoint observes them more strictly for auto-populated tables.
To populate both the master Segmentation and the part Segmentation.ROI , it is sufficient to call the populate
method of the master:

populate(Segmentation)

Note that the entities in the master and the matching entities in the part are inserted within a single make call of the
master, which means that they are a processed inside a single transactions: either all are inserted and committed or the
entire transaction is rolled back. This ensures that partial results never appear in the database.

For example, imagine that a segmentation is performed, but an error occurs halfway through inserting the results. If
this situation were allowed to persist, then it might appear that 20 ROIs were detected where 45 had actually been
found.

9.3.2 Deleting

To delete from a master-part pair, one should never delete from the part tables directly. The only valid method to delete
from a part table is to delete the master. This has been an unenforced rule, but upcoming versions of DataJoint will
prohibit direct deletes from the master table. DataJoint’s delete operation is also enclosed in a transaction.

Together, the rules of master-part relationships ensure a key aspect of data integrity: results of computations involving
multiple components and steps appear in their entirety or not at all.
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9.3.3 Multiple parts

The master-part relationship cannot be chained or nested. DataJoint does not allow part tables of other part tables per
se. However, it is common to have a master table with multiple part tables that depend on each other. For example:

+test/ArrayResponse.m

%{
-> Probe
array: int
%}
classdef ArrayResponse < dj.Computed

methods(Access=protected)
function make(self, key)

self.insert(key)
make(test.ArrayResponseElectrodeResponse, key)

end
end

end

+test/ArrayResponseElectrodeResponse.m

%{
-> test.ArrayResponse
electrode : int % electrode number on the probe
%}
classdef ArrayResponseElectrodeResponse < dj.Part

methods(SetAccess=protected)
function make(self, key)

self.insert(key)
end

end
end

+test/ArrayResponseChannelResponse.m

%{
-> test.ArrayResponseElectrodeResponse
channel: int
---
response: longblob % response of a channel
%}
classdef ArrayResponseChannelResponse < dj.Part

methods(SetAccess=protected)
function make(self, key)

self.insert(key)
end

end
end

Conceptually, one or more channels belongs to an electrode, and one or more electrodes belong to an array. This
example assumes that information about an array’s response (which consists ultimately of the responses of multiple
electrodes each consisting of multiple channel responses) including it’s electrodes and channels are entered together.
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9.4 Transactions in Make

Each call of the make method is enclosed in a transaction. DataJoint users do not need to explicitly manage transactions
but must be aware of their use.

Transactions produce two effects:

First, the state of the database appears stable within the make call throughout the transaction: two executions of the
same query will yield identical results within the same make call.

Second, any changes to the database (inserts) produced by the make method will not become visible to other processes
until the make call completes execution. If the make method raises an exception, all changes made so far will be
discarded and will never become visible to other processes.

Transactions are particularly important in maintaining group integrity with master-part relationships. The make call
of a master table first inserts the master entity and then inserts all the matching part entities in the part tables. None
of the entities become visible to other processes until the entire make call completes, at which point they all become
visible.

9.5 Distributed Computing

9.5.1 Job reservations

Running populate on the same table on multiple computers will causes them to attempt to compute the same data
all at once. This will not corrupt the data since DataJoint will reject any duplication. One solution could be to cause
the different computing nodes to populate the tables in random order. This would reduce some collisions but not
completely prevent them.

To allow efficient distributed computing, DataJoint provides a built-in job reservation process. When dj.Computed

tables are auto-populated using job reservation, a record of each ongoing computation is kept in a schema-wide jobs
table, which is used internally by DataJoint to coordinate the auto-population effort among multiple computing pro-
cesses.

Job reservations are activated by replacing populate calls with identical parpopulate calls.

With job management enabled, the make method of each table class will also consult the jobs table for reserved

jobs as part of determining the next record to compute and will create an entry in the jobs table as part of the attempt
to compute the resulting record for that key. If the operation is a success, the record is removed. In the event of failure,
the job reservation entry is updated to indicate the details of failure. Using this simple mechanism, multiple processes
can participate in the auto-population effort without duplicating computational effort, and any errors encountered
during the course of the computation can be individually inspected to determine the cause of the issue.

As part of DataJoint, the jobs table can be queried using native DataJoint syntax. For example, to list the jobs currently
being run:

The above output shows that a record for the JobResults table is currently reserved for computation, along with
various related details of the reservation, such as the MySQL connection ID, client user and host, process ID on the
remote system, timestamp, and the key for the record that the job is using for its computation. Since DataJoint table
keys can be of varying types, the key is stored in a binary format to allow the table to store arbitrary types of record
key data. The subsequent sections will discuss querying the jobs table for key data.

As mentioned above, jobs encountering errors during computation will leave their record reservations in place, and
update the reservation record with details of the error.
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By leaving the job reservation record in place, the error can be inspected, and if necessary the corresponding
dj.Computed update logic can be corrected. From there the jobs entry can be cleared, and the computation can

then be resumed. In the meantime, the presence of the job reservation will prevent this particular record from being
processed during subsequent auto-population calls. Inspecting the job record for failure details can proceed much like
any other DataJoint query.

After any system or code errors have been resolved, the table can simply be cleaned of errors and the computation
rerun.

In some cases, it may be preferable to inspect the jobs table records using populate keys. Since job keys are hashed
and stored as a blob in the jobs table to support the varying types of keys, we need to query using the key hash instead
of simply using the raw key data.

9.5.2 Managing connections

The DataJoint method dj.kill allows for viewing and termination of database connections. Restrictive conditions
can be used to identify specific connections. Restrictions are specified as strings and can involve any of the attributes
of information_schema.processlist : ID , USER , HOST , DB , COMMAND , TIME , STATE , and INFO .

Examples:

dj.kill('HOST LIKE "%compute%"') lists only connections from hosts containing “compute”.

dj.kill('TIME > 600') lists only connections older than 10 minutes.

A list of connections meeting the restriction conditions (if present) are presented to the user, along with the option to
kill processes.

For example, to sort the output by hostname in descending order:

dj.kill('', dj.conn, 'host desc');

ID USER HOST DB COMMAND TIME STATE INFO TIME_MS ROWS_SENT ROWS_EXAMINED
+--+ +----+ +---------+ +--+ +-------+ +----+ +-----+ +----+ +-------+ +---------+ +-------------+
35 cat localhost:38772 Sleep 94 94040 0 0
36 cat localhost:36543 Sleep 68 68421 1 0

process to kill ('q'-quit, 'a'-all) > q
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10.1 Publications

The following are some of the studies that used DataJoint for building their data pipelines.

1. Rosón, M. R., Bauer, Y., Kotkat, A. H., Berens, P., Euler, T., & Busse, L. (2019). Mouse dLGN receives
functional input from a diverse population of retinal ganglion cells with limited convergence. Neuron, 102(2),
462-476.

2. Ecker, A. S., Sinz, F. H., Froudarakis, E., Fahey, P. G., Cadena, S. A., Walker, E. Y., . . . & Bethge, M.
(2018). A rotation-equivariant convolutional neural network model of primary visual cortex. arXiv preprint
arXiv:1809.10504.

3. Chettih, S. N., & Harvey, C. D. (2019). Single-neuron perturbations reveal feature-specific competition in V1.
Nature, 567(7748), 334.

4. Denfield, G. H., Ecker, A. S., Shinn, T. J., Bethge, M., & Tolias, A. S. (2018). Attentional fluctuations induce
shared variability in macaque primary visual cortex. Nature communications, 9(1), 2654.

5. Shan, Kevin Q., Evgueniy V. Lubenov, and Athanassios G. Siapas. “Model-based spike sorting with a mixture
of drifting t-distributions.” Journal of neuroscience methods 288 (2017): 82-98.

6. Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., & Tolias, A. S. (2016).
Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature communications,
7, 13289.

7. Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., & Baden, T. (2017). Inhibition decorrelates visual
feature representations in the inner retina. Nature, 542(7642), 439.

8. Cadwell, Cathryn R., et al. “Electrophysiological, transcriptomic and morphologic profiling of single neurons
using Patch-seq.” Nature biotechnology 34.2 (2016): 199.

9. Shan, K. Q., Lubenov, E. V., Papadopoulou, M., & Siapas, A. G. (2016). Spatial tuning and brain state account
for dorsal hippocampal CA1 activity in a non-spatial learning task. Elife, 5, e14321.

10. Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., . . . & Tolias, A. S. (2015). Principles of
connectivity among morphologically defined cell types in adult neocortex. Science, 350(6264), aac9462.

11. Yatsenko, D., Josić, K., Ecker, A. S., Froudarakis, E., Cotton, R. J., & Tolias, A. S. (2015). Improved estimation
and interpretation of correlations in neural circuits. PLoS computational biology, 11(3), e1004083.

12. Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S. (2014). Pupil
fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2), 355-362.

13. Erisken, S., Vaiceliunaite, A., Jurjut, O., Fiorini, M., Katzner, S., & Busse, L. (2014). Effects of locomotion
extend throughout the mouse early visual system. Current Biology, 24(24), 2899-2907.
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14. Froudarakis, E., Berens, P., Ecker, A. S., Cotton, R. J., Sinz, F. H., Yatsenko, D., . . . & Tolias, A. S. (2014).
Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nature neuro-
science, 17(6), 851.

15. Ecker, A. S., Berens, P., Cotton, R. J., Subramaniyan, M., Denfield, G. H., Cadwell, C. R., . . . & Tolias, A. S.
(2014). State dependence of noise correlations in macaque primary visual cortex. Neuron, 82(1), 235-248.

16. Cotton, R. J., Froudarakis, E., Storer, P., Saggau, P., & Tolias, A. S. (2013). Three-dimensional mapping of
microcircuit correlation structure. Frontiers in neural circuits, 7, 151.

17. Vaiceliunaite, A., Erisken, S., Franzen, F., Katzner, S., & Busse, L. (2013). Spatial integration in mouse primary
visual cortex. Journal of neurophysiology, 110(4), 964-972.

10.2 Contribute

Thank you for your interest in contributing!

To help keep everyone in alignment and coordinated in the community effort, we’ve created this document. It serves
as the contribution guideline that outlines how open-source software development is to be conducted. Any software
development that makes reference to this document can be assumed to adopt the policies outlined below. We’ve
structured the guideline in a FAQ (frequently asked questions) format to make it easier to digest. Feel free to review
the questions below to determine any specific policy.

The principal maintainer of DataJoint and associated tools is the DataJoint Neuro team (Vathes Inc.). The pronouns
“we” and “us” in this guideline refer to the principal maintainers. We invite reviews and contributions of the open-
source software. We compiled these guidelines to make this work clear and efficient.

10.2.1 1) Which issue should I contribute towards?

There are three primary things to consider when looking to contribute.

• Availability: An indication of whether anyone is currently working on a fix for the given issue. Availability
is indicated by who is assigned . Issues that are unassigned mean that there is no one yet working on
resolving the issue and the issue is available for someone to work on. If an issue has been assigned, then any
additional work on that issue should be coordinated with the assignee.

• Specification: In order for issues to be properly addressed, the requirements of satisfying and closing the issue
should be clear. If it is not, a label will be added as unspecified . This could be due to more debug info being
necessary, more details on intended behavior, or perhaps that further discussion is required to determine a good
solution. Feel free to help us arrive at a proper specification.

• Priority: As a community, we work on a concerted effort to bring about the realization of the milestones. We
utilize milestones as a planning tool to help focus a group of changes around a release. To determine the priority
of issues, simply have a look at the next milestone that is expected to arrive. Therefore, each milestone following
this can be understood as lower in priority respectively. Bear in mind that much like a hurricane forecast, the
execution plan is much more likely to be accurate the closer to today’s date as opposed to milestones further out.
Extremely low priority issues are assigned to the Backburner milestone. Since Backburner does not have
a target date, this indicates that its issues may be deferred indefinitely. Occasionally the maintainers will move
issues from Backburner as it makes sense to address them within a release. Also, issues unassigned to a
milestone can be understood as new issues which have not been triaged.

After considering the above, you may comment on the issue you’d like to help fix and a maintainer will assign it to
you.
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10.2.2 2) What is the proper etiquette for proposing changes as contribution?

What is generally expected from new contributions are the following:

• Any proposed contributor changes should be introduced in the form of a pull request (PR) from their fork.

• Proper branch target specified. The following is generally the available branches that can be targeted:

– main or master : Represents the single source of truth and the latest in completed development.

– pre : Represents the source at the point of the last stable release.

For larger more involved changes, a maintainer may determine it best to create a feature-specific branch and
adjust the PR accordingly.

• A summary description that describes the overall intent behind the PR.

• Proper links to the issue(s) that the PR serves to resolve.

• Newly introduced changes must pass any required checks. Typically as it relates to tests, this means:

1. No syntax errors

2. No integration errors

3. No style errors e.g. PEP8, etc.

4. Similar or better code coverage

• Additional documentation to reflect new feature or behavior introduced.

• Necessary updates to the changelog following Keep a Changelog convention.

• A contributor should not approve or merge their own PR.

• Reviewer suggestions or feedback should not be directly committed to a branch on a contributor’s fork. A less
intrusive way to collaborate would be for the reviewer to PR to the contributor’s fork/branch that is associated
with the main PR currently in review.

Maintainers will also ensure that PR’s have the appropriate assignment for reviewer, milestone, and project.

10.2.3 3) How can I track the progress of an issue that has been assigned?

Since milestones represent the development plan, projects represent the actual execution. Projects are typically fixed-
time sprints (1-2 weeks). A ‘workable’ number of issues that have been assigned to developers and assigned to the
next milestone are selected and tracked in each project to provide greater granularity in the week-to-week progress.
Automation is included observing the Automated kanban with reviews template. Maintainers will adjust the
project assignment to reflect the order in which to resolve the milestone issues.

10.2.4 4) What is the release process? How do I know when my merged contribution
will officially make it into a release?

Releases follow the standard definition of semantic versioning. Meaning:

MAJOR . MINOR . PATCH

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.
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Each release requires tagging the commit appropriately and is then issued in the normal medium for release e.g. PyPi,
NPM, YARN, GitHub Release, etc.

Minor releases are triggered when all the issues assigned to a milestone are resolved and closed. Patch releases are
triggered periodically from main or master after a reasonable number of PR merges have come in.

10.2.5 5) I am not yet too comfortable contributing but would like to engage the com-
munity. What is the policy on community engagement?

In order to follow the appropriate process and setting, please reference the following flow for your desired mode of
engagement:

5a) Generally, how do I perform __________?

If the documentation does not provide clear enough instruction, please see StackOverflow posts related to the datajoint
tag or ask a new question tagging it appropriately. You may refer to our datajoint tag wiki for more details on its proper
use.

5b) I just encountered this error, how can I resolve it?

Please see StackOverflow posts related to the datajoint tag or ask a new question tagging it appropriately. You may
refer to our datajoint tag wiki for more details on its proper use.

5c) I just encountered this error and I am sure it is a bug, how do I report it?

Please file it under the issue tracker associated with the open-source software.

5d) I have an idea or new feature request, how do I submit it?

Please file it under the issue tracker associated with the open-source software.

5e) I am curious why the maintainers choose to __________? i.e. questions that are ‘opinionated’ in
nature with answers that some might disagree.

Please join the community on the DataJoint Slack and ask on the most relevant channel. There, you may engage
directly with the maintainers for proper discourse.

5f) What is the timeline or roadmap for the release of certain supported features?

Please refer to milestones and projects associated with the open-source software.

114 Chapter 10. Community

https://stackoverflow.com/questions/tagged/datajoint
https://stackoverflow.com/tags/datajoint/info
https://stackoverflow.com/questions/tagged/datajoint
https://stackoverflow.com/tags/datajoint/info
https://join.slack.com/t/datajoint/shared_invite/enQtMjkwNjQxMjI5MDk0LTQ3ZjFiZmNmNGVkYWFkYjgwYjdhNTBlZTBmMWEyZDc2NzZlYTBjOTNmYzYwOWRmOGFmN2MyYzU0OWQ0MWZiYTE


DataJoint User Manual, Release matlab-v3.4

5g) I need urgent help best suited for live debugging, how can I reach out directly?

Please join the community on the DataJoint Slack and ask on the most relevant channel. Please bear in mind that as
open-source community software, availability of the maintainers might be limited.

10.3 Engagements

DataJoint was originally developed by working systems neuroscientists at Andreas Tolias’ Lab at Baylor College of
Medicine to meet the needs of their own research.

Below is a partial list of known DataJoint users. Please let us know if you would like to add another lab or make a
correction.

10.3.1 Multi-lab collaboratives

1. International Brain Laboratory

2. Mesoscale Activity Project

3. IARPA MICrONS

4. Princeton U19 Project

5. UCSD U19 Project “Reverse Engineering the Brain Stem Circuits That Govern Exploratory Behavior”

10.3.2 Invidiual Labs

1. Tolias Lab (Andreas Tolias), Baylor College of Medicine

2. Siapas Lab (Athanassios G. Siapas), California Institute of Technology

3. Svoboda Lab (Karel Svoboda), Janelia Research Campus

4. Li Lab (Nuo Li), Baylor College of Medicine

5. Busse Lab (Laura Busse), Ludwig-Maximilians-Universität München, München, Germany

6. Katzner Lab (Steffen Katzner), Ludwig-Maximilians-Universität München, München, Germany

7. Sinz Lab (Fabian Sinz), Wilhelm Schickard Institute for Computer Science, Cyber Valley Initiative, University
Tübingen

8. Berens Lab (Philipp Berens), Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany

9. Euler Lab (Thomas Euler), Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany

10. Bethge Lab (Matthias Bethge), Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany

11. Shcheglovitov Lab (Alex Shcheglovitov) University of Utah

12. Moser Group (May-Britt Moser and Edvard Moser), Kavli Institute for Systems Neuroscience and Centre for
Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

13. Seung Lab (Sebastian Seung), Princeton University

14. Mouse Motor Lab (Mackenzie Mathis), Rowland Institute at Harvard University

15. Harvey Lab (Christopher Harvey), Harvard Medical School

16. Angelaki Lab (Dora Angelaki), New York University
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https://www.internationalbrainlab.com
https://www.simonsfoundation.org/funded-project/%20multi-regional-neuronal-dynamics-of-memory-guided-flexible-behavior/
https://www.iarpa.gov/index.php/research-programs/microns
https://www.princeton.edu/news/2017/10/24/seven-princeton-researchers-receive-nih-brain-initiative-awards
https://toliaslab.org
https://www.janelia.org/lab/svoboda-lab
http://www.neuro.bio.lmu.de/research_groups/res-busse_l/index.html
https://sinzlab.org
https://philippberens.wordpress.com/
http://www.eye-tuebingen.de/eulerlab/
http://bethgelab.org/
https://www.shcheglovitov.com/
https://www.ntnu.edu/kavli/research/moser
http://seunglab.org/
http://www.mousemotorlab.org
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17. Smirnakis Lab (Stelios Smirnakis), Harvard Medical School

18. McGinley Lab (Matthew McGinley), Baylor College of Medicine

19. Reimer Lab (Jacob Reimer), Baylor College of Medicine

20. Wang Lab (Fan Wang), Duke University

21. Applied Physics Laboratory, Johns Hopkins University
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